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Abstract: Analysis of time series of counts is an important research topic in many bio-medical and socio-economic
sectors. For example, analyzing the yearly number of patients of a particular disease in a country is an important
problem for health economics. Similarly, analyzing the monthly number of tourists for a city/country and the
yearly number of patents awarded to a firm are important economic problems. Unlike in the Gaussian time series
case, the analysis of this type of count data is, however, not easy due to the difficulty of modelling the correlated
count data recorded over a long period of time. The problem becomes much more difficult if the counts are non-
stationary over time, which is likely to be the case in many practical situations. Recently, some authors have
developed Gaussian type non-stationary AR(1) (auto-regressive of order 1) models to fit the time series of count
data. But, as in practice, there may be situations where Gaussian type moving average (MA) models may fit the
count data better than the AR models, this paper develops a non-stationary MA(1) model and compare its basic
properties with those of the AR(1) model. For the purpose of statistical inference, the parameters of the proposed
models are estimated through an efficient quasi-likelihood (QL) approach.
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1 Introduction have mainly modelled the stationary count data with
auto-regressive order 1 (AR(1)) Gaussian type corre-
lation structure. Note that as the count data in a time
series rarely follow stationarity in practice, recently,
Mallick and Sutradhar [5] have extended the station-
ary AR(1) models for the negative binomial counts to
’ ' the non-stationary case that include the non-stationary
lation structure. To model the correlation structure Poisson case as a sub-model. In Section 2.1, this non-
of the count data recorded over time, some authors giationary AR(1) Poisson model is described in brief.
such as Zeger [10] (see also Harvey and Fernandes g rther note that in practice there may be situations
[4], Davis et al [2]) assume that conditional on & de- \here time series of count data may be better fitted
pendent sequence of a stationary Gaussian random ef'by a Gaussian type moving average order 1 (MA(1))
fects with auto-correlation structure, the time series [ 154el as compared to the AR(L) type model. For this
data follow independent Poisson distributions so that reason, in this paper, a non-stationary MA(1) model

unco'nditi'onally the observations are correlated. Note ¢4, count data is developed and its basic properties are
that in this approach, even though the random effects compared to that of the non-stationary AR(1) model.
have a Gaussian correlation structure, they however This is done in the next section, specifically in Sec-

yield a complicated correlation structure for the count  tions 2.1 and 2.2. In Section 3. a generalized QL

responses. (GQL) approach is discussed for the estimation of the

~ Itis interesting to point out that during the late  yegression and the MA(1) correlation parameters. The
eighties, some researchers indeed tried to construct a paner is concluded in Section 4.

Gaussian type correlation model for the count data.
For example, one may refer to McKenzie [6,7] and
Sim and Lee [8]. For more recent works in this direc-
tion, the readers are referred to Al-osh and Aly [1] and
Freeland and McCabe [3], for example. These authors

As opposed to the modelling of non-stationary Gaus-
sian time series data, the modelling of time series of
non-stationary counts is not easy. This is because,
unlike the Gaussian case, it is not easy to write a
multivariate count distribution with a suitable corre-
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2 Non-stationary Counts for Poisson
Counts

2.1 Non-stationary AR(1) Models

Lety; (t =1,---,T) be the count response recorded
at timet andz; (t = 1,---,T) be the correspond-
ing p x 1 vector of covariates. Further let =
(By,y - ,6;,)' be thep-dimensional vector of regres-
sion effects. Suppose that follows the Poisson dis-
tribution with mean parameter; = e*1°, that is
y1 ~ P(up = e"P). Fort = 2,...,T, one may
follow the stationary model due to McKenzie [7] (see
also Sutradhar [9]), and write the relationshipef
with ;1 as

(1)

but unlike the stationary case it is assumed in (1) that
Ye—1 ~ P(ue—1), anddy ~ P(pe—ppe—1), With p; =

¢*t7 (see Mallick and Sutradhar [5]). Hedeandy;_;

are independent. Also in (1), for given coupt 1, p *

Y1 = E?’;‘f bi(p), whereb;(p) stands for a binary
variable withpr(b;(p) = 1) = p andpr(b;j(p) =

0) = 1 — p. This operation in (1), i.e.p * y;—1 IS
known as the so called binomial thinning operation. It
then follows thaty, ~ P(u¢) so that

Yr = p* Y1 +dy,

E(Y;) = var(Y;) = py = ¢*, ®)

forallt = 1,...,T. Furthermore, by using (1), one
can compute thé(Y;Y;_,) which yields the lag =
1,...,T — 1 correlations as

py(l) = corr(Yy,Yiy) = l, /%.
t

Note that for the non-stationary case, for— pu;—1
to be non-negative must satisfy the range restriction

3)

ﬁ},t—z,---,T. (4)

0 < p<min [1,
Ht—1

Mallick and Sutradhar [5] also discussed the es-
timation of the regression parameteéand the AR(1)
correlation parameter.

2.2 Non-stationary MA(1) Models for Count
Data

Similar to the Gaussian model, the MA(1) model for
the count responses may be expressed as

(5)

where *’ denotes the same binomial thinning opera-
tion as in the AR(1) case. Note that under the MA(1)

Yr = p* di—1 +dy,

model (5),y; is a function of discrete errors that occur
at the present time poirttand at the lag 1 past time
pointt — 1, whereas under the AR(1) model (3),is

a function of the discrete error at time potrand the
lag 1 past count response. Suppose thandd;
follow the Poisson distributions given as

de ~ P(pe/(1 + p)), andd—y ~ P(pe—1/(1 + P)(é»)
respectively. Similar to the AR(1) casg, in (5), is
assumed to follow the Poisson distribution with pa-
rameteru;. Fort = 2,...,T, and using the notation
z 1 =px*xdi_1, t =2,...,T, one can compute the
meanv; = E(Y;) and the variance, = var(Y;), as

v = Eq,_ Elze1] + Eldi] = [ppe—1 + pe] /(1 + p),

and )
o = vary, , Elz|di_1] + Eq, ,varz|di_1]
+var(d; ]
= vary,_, [pdi—1] + Eq,_,[p(1 — p)di—1]
+lue/ (1 + p)]
= [ppe—1+ pel /(1 + p), (8)

respectively. Note thaty = 1y, fort = 2,...,T,
whereagy; has the mean and varianceias= o011 =
w1 only. Further note that the mean and the variance
computed in (7) and (8) also follow from the fact that
fort = 2,...,T, y in (5)) has the Poisson distribu-
tion with parameter; = [pu—1 + ue]/(1+ p) where
e = %P Furthermore, it follows from (7) and (8)
that thep parameter must satisfy the range restriction
maX{—pit/ 1] < p < 1.

Next, under the MA(1) model (5)-(6), it can be
shown that fort = 2,...,T,and/ =1,...,T — 1,
the auto-covariances are given by

ppi—e/(L+p) foré=1

:{0

3 Estimation of Parameters

cov(Yr, Yi—¢) or ¢
or? > 1.

(9)

This section deals with the estimation of the regres-
sion effects, and the correlation parameter More
specifically, the regression effeg@tis estimated by us-
ing the so-called GQL (see Sutradhar [9] and Zeger
[10]) approach, whereasis estimated by the method
of moments.
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3.1 Estimation of the Regression Effects

The GQL approach exploits the mean vector and the
covariance structure of the data. To be specific, let
y=(y1, -y, yr) be theT-dimensional vec-
tor of all responses and = (v, -+, vy, - -,VT)' be

the mean vector af, wherew, by (7) is given ag/ =
pi,andfort =2, T, vy = [t + ppe—1]/(1 + p).
Furthermore, leE = (o,,/) be theT' x T covariance
matrix of y, where

ow = {

with o4 as given by (8). It then follows that for known
p, one may write the GQL estimating equation for
as

Tit, if t= t/
(10)
Pt

el ift<t

o'

oyl —) =

3 (y—v)=0,
(Sutradhar [9]) which may be solved iteratively by
Newton-Raphson iterative technique. To be specific,

(112) is solved for3 iteratively by using

(11)

A~

Br+1) = B(r)
’ —1
+ [({X A+ 7' BISTYAX + BZ})
< {X' A+ 2 ByYs (y - y)}[ .12
where
X/ = (xl,...,mt,...,xT), Z/ = (1p7 xl,...,xT_l),
. H2 Mt ur
A:dla ) y Ty y Ty )
A 1+p 1+p 1+p)
. PH1 P2 Pl PHT—1
B:dla 07—7 s Ty y Ty )
g 1+p 14+p 1+p 1—1—/))

and[.], denotes the fact that the expression within the
brackets is evaluated &(r). Let 3¢ denote the so-
lution obtained from (12). Under mild regularity con-
ditions it may be shown tha?GQL has the asymptotic
as(T — oo) normal distribution given as

~

T3(Bagr—B) ~ N(O, T[{X'A+2'B}s™!

x{AX +BZ}]™").  (13)
3.2 Estimation of the Correlation Parameter

P
As far as they parameter is concerned, this will be es-
timated by using the well known method of moments.

For the purpose, one first observes that

2
E [(Yt\/—y_Vt)} - 1

(Y — ) (Vi1 — v4—1) P e
E l NZ Vi ] 1+p ;;Vtthl )

Consequently, one may obtain a consistent estimator
of p by solving the moment equation

a(p) p
N c\p), (15)
bp) ~ 1+ )
where
alp) = 1 ZT:(Yt—Vt) (Y 1_Vt—1)’
T-15 Vn Vi1
N N AAT
b(p) = T [ : L ‘| )
T t§::1 N
and
dp) =Ly g
T-1 —2 ViV
Note that solving (15) fop is complicated as;
containsp for all ¢t = 1,...,7. One may however

obtain an approximate solution based on an iterative
technique by using an initial value pf saypy, in all
v¢, and solving (15) fop as

p1 = a(po) ‘
b(po)c(po) — alpo)

Next one may improve the estimate @by usingp;
in place ofpg in (17). That is, the new solution @fis
obtained as

(17)

a(p1)
p1)c(p1) —a(p1)

2=y (18)

This iteration continues until convergence.

4 Conclusion

This paper has introduced two non-stationary time se-
ries models, namely the AR(1) and MA(1) models
for the analysis of a time series of counts. It is also
shown how to obtain consistent and efficient estimates
for the parameters of these two models. In a sepa-
rate paper, these two models have been fitted to the
US polio count data and it was seen that the MA(1)
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model fits this data better than the AR(1) model. This
data set was analyzed earlier by Mallick and Sutrad-
har [5] using the AR(1) model and by Davis et al [2]
and Zeger [10] using the so-called random effects ap-
proach. Note that the proposed models should be use-
ful for the forecasting of a future count, such as (1) the
tourist number in a future month for a city or country,
(2) the number of patient from a disease at a future
time. This forecasting aspect is however beyond the
scope of the present paper.
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