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Abstract:Analysis of time series of counts is an important research topic in many bio-medical and socio-economic
sectors. For example, analyzing the yearly number of patients of a particular disease in a country is an important
problem for health economics. Similarly, analyzing the monthly number of tourists for a city/country and the
yearly number of patents awarded to a firm are important economic problems. Unlike in the Gaussian time series
case, the analysis of this type of count data is, however, not easy due to the difficulty of modelling the correlated
count data recorded over a long period of time. The problem becomes much more difficult if the counts are non-
stationary over time, which is likely to be the case in many practical situations. Recently, some authors have
developed Gaussian type non-stationary AR(1) (auto-regressive of order 1) models to fit the time series of count
data. But, as in practice, there may be situations where Gaussian type moving average (MA) models may fit the
count data better than the AR models, this paper develops a non-stationary MA(1) model and compare its basic
properties with those of the AR(1) model. For the purpose of statistical inference, the parameters of the proposed
models are estimated through an efficient quasi-likelihood (QL) approach.
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1 Introduction

As opposed to the modelling of non-stationary Gaus-
sian time series data, the modelling of time series of
non-stationary counts is not easy. This is because,
unlike the Gaussian case, it is not easy to write a
multivariate count distribution with a suitable corre-
lation structure. To model the correlation structure
of the count data recorded over time, some authors
such as Zeger [10] (see also Harvey and Fernandes
[4], Davis et al [2]) assume that conditional on a de-
pendent sequence of a stationary Gaussian random ef-
fects with auto-correlation structure, the time series
data follow independent Poisson distributions so that
unconditionally the observations are correlated. Note
that in this approach, even though the random effects
have a Gaussian correlation structure, they however
yield a complicated correlation structure for the count
responses.

It is interesting to point out that during the late
eighties, some researchers indeed tried to construct a
Gaussian type correlation model for the count data.
For example, one may refer to McKenzie [6,7] and
Sim and Lee [8]. For more recent works in this direc-
tion, the readers are referred to Al-osh and Aly [1] and
Freeland and McCabe [3], for example. These authors

have mainly modelled the stationary count data with
auto-regressive order 1 (AR(1)) Gaussian type corre-
lation structure. Note that as the count data in a time
series rarely follow stationarity in practice, recently,
Mallick and Sutradhar [5] have extended the station-
ary AR(1) models for the negative binomial counts to
the non-stationary case that include the non-stationary
Poisson case as a sub-model. In Section 2.1, this non-
stationary AR(1) Poisson model is described in brief.
Further note that in practice there may be situations
where time series of count data may be better fitted
by a Gaussian type moving average order 1 (MA(1))
model as compared to the AR(1) type model. For this
reason, in this paper, a non-stationary MA(1) model
for count data is developed and its basic properties are
compared to that of the non-stationary AR(1) model.
This is done in the next section, specifically in Sec-
tions 2.1 and 2.2. In Section 3, a generalized QL
(GQL) approach is discussed for the estimation of the
regression and the MA(1) correlation parameters. The
paper is concluded in Section 4.
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2 Non-stationary Counts for Poisson
Counts

2.1 Non-stationary AR(1) Models
Let yt (t = 1, · · · , T ) be the count response recorded
at time t andxt (t = 1, · · · , T ) be the correspond-
ing p × 1 vector of covariates. Further letβ =
(β1, · · · , βp)

′
be thep-dimensional vector of regres-

sion effects. Suppose thaty1 follows the Poisson dis-
tribution with mean parameterµ1 = ex

′
1β, that is

y1 ∼ P (µ1 = ex
′
1β). For t = 2, . . . , T, one may

follow the stationary model due to McKenzie [7] (see
also Sutradhar [9]), and write the relationship ofyt
with yt−1 as

yt = ρ ∗ yt−1 + dt, (1)

but unlike the stationary case it is assumed in (1) that
yt−1 ∼ P (µt−1), anddt ∼ P (µt−ρµt−1),with µt =
ex
′
tβ (see Mallick and Sutradhar [5]). Heredt andyt−1

are independent. Also in (1), for given countyt−1, ρ ∗
yt−1 =

∑yt−1

j=1 bj(ρ), wherebj(ρ) stands for a binary
variable withpr(bj(ρ) = 1) = ρ and pr(bj(ρ) =
0) = 1 − ρ. This operation in (1), i.e.,ρ ∗ yt−1 is
known as the so called binomial thinning operation. It
then follows thatyt ∼ P (µt) so that

E(Yt) = var(Yt) = µt = ex
′
tβ, (2)

for all t = 1, . . . , T. Furthermore, by using (1), one
can compute theE(YtYt−`) which yields the lag̀ =
1, . . . , T − 1 correlations as

ρy(l) = corr(Yt, Yt−l) = ρl
√
µt−l
µt

. (3)

Note that for the non-stationary case, forµt − ρµt−1

to be non-negativeρ must satisfy the range restriction

0 < ρ < min

[
1,

µt
µt−1

]
, t = 2, · · · , T. (4)

Mallick and Sutradhar [5] also discussed the es-
timation of the regression parameterβ and the AR(1)
correlation parameterρ.

2.2 Non-stationary MA(1) Models for Count
Data

Similar to the Gaussian model, the MA(1) model for
the count responses may be expressed as

yt = ρ ∗ dt−1 + dt, (5)

where ‘*’ denotes the same binomial thinning opera-
tion as in the AR(1) case. Note that under the MA(1)

model (5),yt is a function of discrete errors that occur
at the present time pointt and at the lag 1 past time
point t− 1, whereas under the AR(1) model (1),yt is
a function of the discrete error at time pointt and the
lag 1 past count response. Suppose thatdt anddt−1

follow the Poisson distributions given as

dt ∼ P (µt/(1 + ρ)), anddt−1 ∼ P (µt−1/(1 + ρ)),
(6)

respectively. Similar to the AR(1) case,y1 in (5), is
assumed to follow the Poisson distribution with pa-
rameterµ1. For t = 2, . . . , T, and using the notation
zt−1 = ρ ∗ dt−1, t = 2, . . . , T , one can compute the
meanνt = E(Yt) and the varianceσtt = var(Yt), as

νt = Edt−1E[zt−1] + E[dt] = [ρµt−1 + µt]/(1 + ρ),
(7)

and

σtt = vardt−1E[zt|dt−1] + Edt−1var[zt|dt−1]

+var[dijt]

= vardt−1 [ρdt−1] + Edt−1 [ρ(1− ρ)dt−1]

+[µt/(1 + ρ)]

= [ρµt−1 + µt]/(1 + ρ), (8)

respectively. Note thatσtt = νt, for t = 2, . . . , T ,
whereasy1 has the mean and variance asν1 = σ11 =
µ1 only. Further note that the mean and the variance
computed in (7) and (8) also follow from the fact that
for t = 2, . . . , T, yt in (5)) has the Poisson distribu-
tion with parameterνt = [ρµt−1 + µt]/(1 + ρ) where
µt = ex

′
tβ. Furthermore, it follows from (7) and (8)

that theρ parameter must satisfy the range restriction
max[−µt/µt−1] < ρ < 1.

Next, under the MA(1) model (5)-(6), it can be
shown that fort = 2, . . . , T, and` = 1, . . . , T − 1,
the auto-covariances are given by

cov(Yt, Yt−`) =

 ρµt−`/(1 + ρ) for ` = 1

0 for ` > 1.
(9)

3 Estimation of Parameters
This section deals with the estimation of the regres-
sion effectβ, and the correlation parameterρ. More
specifically, the regression effectβ is estimated by us-
ing the so-called GQL (see Sutradhar [9] and Zeger
[10]) approach, whereasρ is estimated by the method
of moments.
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3.1 Estimation of the Regression Effectsβ
The GQL approach exploits the mean vector and the
covariance structure of the data. To be specific, let
y = (y1, · · · , yt, · · · , yT )

′
be theT -dimensional vec-

tor of all responses andν = (ν1, · · · , νt, · · · , νT )
′

be
the mean vector ofy, whereνt by (7) is given asν1 =
µ1, and fort = 2, . . . , T, νt = [µt + ρµt−1]/(1 + ρ).
Furthermore, letΣ = (σtt′ ) be theT × T covariance
matrix ofy, where

σtt′ =

 σtt, if t = t
′

ρµt
1+ρ , if t < t

′
. (10)

with σtt as given by (8). It then follows that for known
ρ, one may write the GQL estimating equation forβ
as

∂ν ′

∂β
Σ−1(y − ν) = 0, (11)

(Sutradhar [9]) which may be solved iteratively by
Newton-Raphson iterative technique. To be specific,
(11) is solved forβ iteratively by using

β̂(r + 1) = β̂(r)

+
[(
{X ′A+ Z ′B}Σ−1{AX +BZ}

)−1

×{X ′A+ Z ′B}Σ−1(y − ν)
]

[r]
, (12)

where

X ′ = (x1, . . . , xt, . . . , xT ), Z ′ = (1p, x1, . . . , xT−1),

A = diag(µ1,
µ2

1 + ρ
, · · · , µt

1 + ρ
, · · · , µT

1 + ρ
),

B = diag(0,
ρµ1

1 + ρ
,
ρµ2

1 + ρ
, · · · , ρµt

1 + ρ
, · · · , ρµT−1

1 + ρ
),

and[.]r denotes the fact that the expression within the
brackets is evaluated at̂β(r). Let β̂GQLdenote the so-
lution obtained from (12). Under mild regularity con-
ditions it may be shown that̂βGQL has the asymptotic
as(T →∞) normal distribution given as

T
1
2 (β̂GQL − β) ∼ N(0, T

[
{X ′A+ Z ′B}Σ−1

×{AX +BZ}]−1). (13)

3.2 Estimation of the Correlation Parameter
ρ

As far as theρ parameter is concerned, this will be es-
timated by using the well known method of moments.

For the purpose, one first observes that

E

[
(Yt − νt)√

νt

]2

= 1

E

[
(Yt − νt)√

νt

(Yt−1 − νt−1)
√
νt−1

]
=

ρ

1 + ρ

µt−1√
νtνt−1

.(14)

Consequently, one may obtain a consistent estimator
of ρ by solving the moment equation

a(ρ)
b(ρ)

=
ρ

1 + ρ
c(ρ), (15)

where

a(ρ) =
1

T − 1

T∑
t=2

(Yt − νt)√
νt

(Yt−1 − νt−1)
√
νt−1

,

b(ρ) =
1
T

T∑
t=1

[
(Yt − νt)√

νt

]2

,

and

c(ρ) =
1

T − 1

T∑
t=2

µt−1√
νtνt−1

. (16)

Note that solving (15) forρ is complicated asνt
containsρ for all t = 1, . . . , T. One may however
obtain an approximate solution based on an iterative
technique by using an initial value ofρ, sayρ0, in all
νt, and solving (15) forρ as

ρ1 =
a(ρ0)

b(ρ0)c(ρ0)− a(ρ0)
. (17)

Next one may improve the estimate ofρ by usingρ1

in place ofρ0 in (17). That is, the new solution ofρ is
obtained as

ρ2 =
a(ρ1)

b(ρ1)c(ρ1)− a(ρ1)
. (18)

This iteration continues until convergence.

4 Conclusion
This paper has introduced two non-stationary time se-
ries models, namely the AR(1) and MA(1) models
for the analysis of a time series of counts. It is also
shown how to obtain consistent and efficient estimates
for the parameters of these two models. In a sepa-
rate paper, these two models have been fitted to the
US polio count data and it was seen that the MA(1)

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp359-362)



model fits this data better than the AR(1) model. This
data set was analyzed earlier by Mallick and Sutrad-
har [5] using the AR(1) model and by Davis et al [2]
and Zeger [10] using the so-called random effects ap-
proach. Note that the proposed models should be use-
ful for the forecasting of a future count, such as (1) the
tourist number in a future month for a city or country,
(2) the number of patient from a disease at a future
time. This forecasting aspect is however beyond the
scope of the present paper.
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