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Abstract: Observations driven non-stationary Poisson AR(1) and MA(1) models may be applied to analyze various
biomedical and socio-economic (e.g., monthly tourist counts) time series of counts. This paper fits such AR(1) and
MA(1) models to the US monthly polio count data which was analyzed earlier by Zeger [7] and Davis, Dunsmuir
and Wang [1] by using a random effects based correlated count response model. The goodness of fitting of the
AR(1) and MA(1) models to this polio data set is also discussed.
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1 Introduction

Analysis of time series of counts is an important re-
search topic in the biomedical and socio-economic
fields. The statistical analysis of this type of data has
not been, however, easy, because of the difficulty in
modelling the correlation structure of repeated counts
over a long period of time. To model the correla-
tion structure of the count data recorded over time,
some authors such as Zeger [7] (see also Harvey and
Fernandes [2], Davis et al [1]) assumes that condi-
tional on a dependent sequence of a stationary Gaus-
sian random effects with auto-correlation structure,
the time series data follow independent Poisson dis-
tributions so that unconditionally the observations are
correlated. Note however that in this approach, even
though the random effects have a Gaussian correlation
structure, they however yield a complicated correla-
tion structure for the count responses.

Following the observations driven stationary
AR(1) models (McKenzie [4,5]) for the count data,
recently Mallick and Sutradhar [3] have extended the
stationary AR(1) models for the negative binomial
counts to the non-stationary case that include the non-
stationary Poisson case as a sub-model. One may sim-
ilarly construct an MA(1) non-stationary correlations
model for the count data. This paper fits both of these
AR(1) and MA(1) models to the US polio count data
which was earlier analyzed by Zeger [7] and Davis et
al [1]. To be specific, in Section 2, the AR(1) and
MA(1) models are described in brief along with the
GQL estimating equations for the parameters of these

models. In Section 3, the estimation techniques from
Section 2 has been applied to analyze the US polio
data. Goodness of fit of these two models to the US
polio data is also discussed.

2 Estimating Formulas Under Both
AR(1) and MA(1) Models

Let ���������
	����������� be the count response recorded
at time � and � ��������	����������� be the correspond-
ing ��� 	 vector of covariates. Further let � �� ��� ������ � � �"! be the � -dimensional vector of regres-
sion effects. The GQL estimating equations for the
regression effects and the moment estimating equa-
tions for the correlation parameters under both AR(1)
and MA(1) models are given below.

2.1 Non-stationary AR(1) Models
Model: ���#�%$'&����)( �+*-, �.�
where � �)( �0/21 ��3 �)( � �4� , � /51 ��3 �76 $ 3 �)( � �4� with3 � �98;: !<>= , and $?&@� �)( � �BA%C <EDGFHJI ��K H ��$L�4� with K H ��$L�
representing a binary variable such that �NM � K H ��$L�O�	��P�Q$ and �NM � K H ��$R�P�TS �P�U	 6 $ . Also � �)( � and , �
are independent.
GQL Estimating Equation for � : Let � ���� � ������.���.����;�.��V+�"! be the � -dimensional vector of
all responses and 3 � ��3 � ������.3��.����;�.3WV+� ! be
the mean vector of � , and X � �)Y �Z� ! � be the� � � covariance matrix of � , where Y �Z� ! �
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[ \ ]
var �)^_�"� var �)^ � ! �a`;$ C �Eb��dce� with var �)^L�"� and $ C �Eb��

representing the variance and lag b correlations of the
responses. Then the GQL estimate of � is obtained by
solving the estimating equation f;g !f = X

( � ��� 6 3h�7�TSRi
Moment Equation for $ : Under the AR(1) model,
the moment estimate of $ has the formula given by

j$k� A V � IWlnm��� m���)( �A V � I � m� l�
�

A V � IWl�o 3��)( �Jp 3��)q Fr �
where m���#� o ��� 6 3���q p�s 3���i
2.2 Non-stationary MA(1) Model
Model: ���#�%$'& , �)( �t*u, �.�
where , � /Q1 ��3�� p ��	 * $R�.�4� and , �)( � /Q1 ��3��)( �Jp ��	 *$R�.�4� respectively.
The GQL Estimating Equation for � : Let v �� v � ����;� v � ������ v V � ! be the mean vector of � ���� � ������.� � ����;�.� V � ! � with v � �xwy�)^ � �z� var �)^ � �
for all �{�|	���i�i�i����@i Furthermore, let mX �}�)Y �Z� ! � be
the � � � covariance matrix of � . Then for known$ , the GQL estimating equation for � is given byf;~ !f = mX ( � ��� 6 v ���|SR� (Sutradhar [6]) which may be
solved iteratively by Newton-Raphson iterative tech-
nique.
Moment Estimating Equation for the Correlation
Parameter $ : A consistent estimate of $ is obtained
by solving the moment equation derived from the co-
variance equation given byw o �)^�� 6 v �"���)^N�)( � 6 v �)( � ��qW� ] $ p ��	 * $R�a`;3��)( � i
3 Analysis of U.S. Polio Count Data
This section first fits the non-stationary Poisson
MA(1) model to the time series of the monthly num-
ber of cases of poliomyelitis reported by the U.S. Cen-
ters for Disease Control for the years 1970-1983. Here
total number of observations is �U��	;��� . For conve-
nience the data set is shown in Figure 1. Note that
this data was first analyzed by Zeger [7] and then
by Davis et al [1] both by using their proposed ran-
dom effects based parameter driven models. For the
purpose of comparison, the same regression variables
as in Zeger [7] have been used. Consequently, the
monthly number of polio cases are regressed on a lin-
ear trend as well as sine, cosine pairs at annual and
semi-annual frequencies to reveal the evidence of sea-
sonality. More specifically, the selected covariates are
:

� ��� ��	��.� ! p 	�S�S�SR�������G�����W� ! p 	;���4�a�����������W� ! p 	;���4�
�����G�����W� ! p ���4�������������W� ! p ����q ! ���
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Figure 1: U.S. polio count data from January 1970 to
December 1983 and expected counts based on AR(1)
and MA(1) models.

where � ! ����� 6���� � is used to locate the intercept
term at January 1976, for ����	�������;	;��� . Mallick and
Sutradhar (2005) have analyzed the same polio data
by using the non-stationary AR(1) model for the count
data. In this section, a comparison of the inferences is
made by fitting the AR(1) and MA(1) models.

Under the non-stationary MA(1) model, the � and
the $ parameters are estimated simultaneously by us-
ing the formulas from Section 2.2. The standard errors
of the regression estimates are computed by an appro-
priate formula derived from the estimating equation.
The regression estimates along with their standard er-
rors as well as the estimate of $ parameter are given
in Table 1.

Table 1. Comparison of the estimates of the regres-
sion and the correlation parameters under the AR(1)
and MA(1) models in fitting the original as well as the
modified (adjusted for possible outliers) polio data .
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Fitting original data
AR(1) model MA(1) Model

Parameters EST SE EST SE
Intercept � �N� � 0.19 0.094 0.33 0.469
Trend � 	�S (N� � � l � -5.49 1.792 -4.47 -
cos( ���W� p 	;� ) � � ��� -0.19 0.122 -0.28 0.096
sin( ���W� p 	;� ) � �R� � -0.52 0.127 -0.52 0.072
cos( ���W� p � ) � �L� � 0.13 0.106 0.04 0.088
sin( ���W� p � ) � �L� � -0.41 0.110 -0.49 0.092$ 0.22 – 0.32 –$ C ��	�� 0.23 – 0.24 –
SSD 309.5 – 268.5 –
Fitting modified data

AR(1) model MA(1) Model
Parameters EST SE EST SE
Intercept � � � � 0.03 0.084 0.02 0.122
Trend � 	�S (N� � � l � -4.12 1.582 -3.84 1.490
cos( ���W� p 	;� ) � � ��� -0.03 0.105 -0.03 0.105
sin( ���W� p 	;� ) � �R� � -0.50 0.120 -0.49 0.120
cos( ���W� p � ) � �L� � 0.21 0.109 0.21 0.109
sin( ���W� p � ) � � � � -0.18 0.109 -0.19 0.109$ 0.007 – 0.008 –$ C ��	�� 0.007 – 0.008 –
SSD 177.0 – 178.1 –

The estimates of these parameters under the
AR(1) model are computed based on the formulas
given in Section 2.1. These results are also given in
the same table. The $ parameter under the MA(1)
model is estimates as 0.32, whereas under the AR(1)
model, this estimate was found to be 0.22. They along
with the estimates of � however appear to produce the
almost same lag 1 correlation 0.23 or 0.24. Note that
the lag 1 correlations are non-stationary under both
AR(1) and MA(1) models, which are given in Fig-
ure 2 for clarity. The averages of these non-stationary
correlations are referred to as the lag 1 correlations.
The regression estimates appear to be different in gen-
eral under the two models. Except for � � and � l , the
standard errors of the other regression estimates are
smaller under the MA(1) model as compared to those
of the AR(1) model, indicating that MA(1) model pro-
duces efficient regression estimates. Next to see the
over all fit, the traditional standardized squared dis-
tances (SSD) have been computed under both AR(1)
and MA(1) models. Under the AR(1) model this is
given by SSD ��A V� I �@  ����� 6 3��"� p�s 3���¡ l � whereas
under the MA(1) model this SSD is given as SSD �A V � I �   ����� 6 v �"� p s v �)¡ l i The SSD under the MA(1)
model was found to be 268.48, whereas the AR(1)
model produced the SSD as 309.5. Consequently, the
polio data considered here appears to be better fitted
by the MA(1) model. As far as the regression esti-
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Figure 2: AR(1) and MA(1) models based non-
stationary lag 1 correlations for the U.S. polio data
from January 1970 to December 1983; ¢ stands for
AR(1) based correlations and & stands for MA(1)
based correlations.

mates are concerned, most of the estimates including
the trend and seasonal coefficients, are found to be
negative indicating that the polio cases were decreas-
ing in general over the years.

Note that even though the AR(1) model fitted the
data somewhat worse than the MA(1) model, there
were no problems to obtain the the standard errors of
the GQL estimates of the regression parameters under
the AR(1) model, whereas the GQL estimate of the � l
parameter produced negative variance estimate under
the MA(1) model. This happened as the polio data ap-
pears to have a few larger counts (see Figure 1) such as���t�¤£G��	�¥L� � ��� at time points �¦� � � ��§ ��	�	 � �¨	�	�¥
respectively. Thus, the GQL estimation approach un-
der the MA(1) model unlike the AR(1) model may not
be suitable in general to deal with outlier type obser-
vations. This became evident from a re-analysis by
replacing these moderately large counts by the mean
1 of the rest of the data. The GQL estimates of the re-
gression and correlation parameters for this modified
data set are also given in Table 1 under both AR(1)
and MA(1) models. It is clear from the table that both
of these models produce the same estimates for the
regression and the correlation parameters in fitting the
modified data. Furthermore, the modified polio data
appear to be almost independent over the years as the
estimates of the correlation parameters were found to
be 0.01. The goodness of fit by the two models were
also to be the same. Thus, one may fit either of the
two models to the modified polio data , where modi-
fication was done by down weighting the outlier type
count observations.
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4 Conclusion
This paper has demonstrated how one can fit the ober-
vations driven AR(1) and MA(1) models to a time se-
ries of non-stationary counts. This was done by fit-
ting these models to a time series of polio counts from
the USA. The present analysis also indicates that one
would require a suitable robust estimation technique
to fit any time series of counts in the presence of pos-
sible outliers. This generalization is however beyond
the present article.
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