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Abstract:  Discrete time linear quadratic optimization problem with time delay and system constraints is investigated. 
After reformulating the problem, a new procedure is proposed for its solution. It is shown that with the developed 
algorithm the dimensionality of the problem will not increase due to time delays. Moreover, no extra multipliers are 
required to handle system constrains. Simulations results are given to illustrate the capability of the proposed 
procedure in solving this problem. 
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1   Introduction  
Most practical control systems are subject to 
constraints on states and/or controls. These constraints 
are  imposed by physical conditions, and to provide 
efficient plant operations. Moreover, some physical 
systems may acquire time delays in states, and/or 
control for different reasons such as, communication, 
transportation, computational time, …etc. The solution 
of such control systems is challenging due to 
numerical difficulties encountered in finding global 
optimal solution.  
Recently, this problem has attracted many researchers 
[1-4]. It has been shown that system stability and good 
performance can only be achieved with non-linear 
control law. The most prominent approaches for 
designing such a controller fall into either anti-windup 
class of techniques [5,6], or model predictive control 
(MPC) [7-9]. Irrespective of the drawbacks of anti-
windup schemes, they are used in most SISO systems, 
whilst model predictive control has become the 
acceptable standard for complex constrained multi-
variable control problems. 
Hassan et al [10, 11] have developed new techniques 
for solving continuous time   Linear Quadratic control 
Problems (LQP) with constraints, which  has been 
extended to discrete time systems in [12]. The 
developed procedures do not require additional 
multipliers are needed to handle the inequality 
constraint, and their convergence is fast enough. 
Although the above problem is complex enough, it is 
expected that its complexity will increase if the system 
includes time delays in the states and/or controls in 
addition to the existing constraints. This is simply due 

to the fact that time delays will increase the 
computational burden and hence, may slow down the 
convergence to the optimal solution. 
In this paper, discrete time LQP with time delays in 
the states and/or controls, as well as system 
constraints, is considered. The developed technique in 
[12] is extended to handle the problem at hand. Time 
delays are treated without increasing the 
dimensionality of the system. To do that, the problem 
is reformulated to another optimization one, which 
when solved, leads to the optimal solution of the 
original one. Then, based on the derived necessary 
conditions of optimality, an algorithm is developed to 
solve the resulted set of equations which leads to the 
optimal solution. It is worth mentioning that, the 
obtained control strategy is open loop. However, the 
convergence is fast enough which allows its 
application on-line in many real life problems. 
The rest of the paper is divided into the following 
sections. Discrete LQP with time delays and system 
constraints is described and  reformulated in Section 2. 
The new developed procedure and its associated 
algorithm are presented in Section 3. To illustrate the 
applicability of the proposed technique, an example is 
given and simulated in Section 4. Finally, the paper is 
concluded  in  Section 5. 
  
2   Problem Formulation 
Let us consider a linear quadratic discrete optimization 
problem with time delays in the states and controls. 
Moreover, it is assumed that a subset of the state, 
and/or control variables are subject to boundary 
constraints. Thus, we have: 
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where nRx ∈  is the state vector, mRu ∈  is the control 
vector, nd Rx ∈  is the desired state trajectory, nRd ∈  
is a constant or time varying known input, kf is the 
final time, nxn

i RA ∈  ; { }θ,....,,10i ∈  and nxm
j RB ∈ ; 

{ }γ,....,,10j ∈ are the system matrices, nxnRQS ∈, are 
positive semi- definite weighting matrices and finally, 

mxmRR ∈ is a positive definite weighting matrix for 

the control. Also, it is assumed that ( ,x x ), ( u , u ) are 
the lower and upper bounds of the states and control 
variables respectively. 
The above problem can be rewritten in the following 
equivalent form: 
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Note that, in the above formulation, the two terms 
added in the cost function, namely, 
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merely convexing terms to speed up convergence. 
They will not cause any additional cost to the objective 
function (5) at the end of convergence process, if the 
problem has a solution, since 

∞→→ ννν askxkxo )()(  where ν  is the iteration 
number. 
 
3   The Developed Procedure 
Relaxing for the moment the constraints given by (8), 
(9), hence the Lagrangian of the reformulated problem 
is given by: 
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where nRk ∈)(λ is the co-state vector and 
nRk ∈)(π is the Lagrange multiplies corresponding to 

the equality constraint (7).  
Defining the Hamiltonian ),,,,( πλoxuxH as follows: 
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Therefore, (10) can be rewritten in the form: 
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The necessary conditions of optimality give: 
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with fkkfork >= 0)(λ  
However, to satisfy the constraints given by (9), the 
control vector which minimizes the Hamiltonian is 
given by [13]: 
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where i indicates the  thi element in the array.
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Again to satisfy system constraints given by (8), one 
gets: 
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from which, the updating algorithm for )(kπ is given 
by: 

)()()(1 klkk ννν αππ +=+                               (23) 
Since the variable )(kπ  has to be maximized, the 
iteration constant α  has to be positive. The value of 
the vector )(klν can be determined either by using 
steepest descent approach, or conjugate gradient 
technique. 
Based on the necessary conditions of optimality given 
above, the following algorithm is proposed to solve 
the problem at hand: 
Step (1): Initialize the vectors )(),(),( kkxk o ννν λπ ,and   

put the  iteration  number 1=ν . 
Step (2) : Calculate the control vector )(kuν using 

(14). 
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Step (3): Calculate the state vector )(kxν using (17). 
Step (4): Calculate the error criteria: 
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If error < ε , where ε  is a pre-specified small 
constant, record the trajectories and stop. 
Otherwise, go to the next step. 

Step (5): Update the trajectories of the  Lagrange  
 multiplier vector )(k1+νπ using (23). 

Step (6): Calculate the co-state vector )(k1+νλ , and 
)(kx 1o +ν  using (15), (16), (20), and (21). 

Step (7) : Put  1+=νν   and  go  to step (2) above. 
Based on the above algorithm, it is worth to conduct 
the following remarks: 

1. It is not required to solve the difficult TPBVP. 
2. No additional multiplier (Kuhn-Tacker) 

parameters are needed to satisfy inequality 
constraints since the satisfaction of (23) insures 
the satisfaction of the inequality constraints. 

3. The algorithm is simple, since we have to solve 
linear vector difference equations to get x(k) and  

)(kλ  and then make a direct substitution to get 
)(),( kku π  and ( )kxο .  

4. The matrices Q2, S2 play a very important role in 
the convergence process of the algorithm. 

Having developed an algorithm to solve linear 
quadratic discrete optimization problems with time 
delays and system constraints, in the following 
Section, an illustrative example is given to show the 
applicability of the proposed procedure. 
 
 
4   Illustrative Example 
To illustrate the preceding results, let us consider the 
following linear time delay system: 
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Q=I2,   R=0.5. 

The above problem is discretized using an interval 
1.0=∆T , τ  is taken as a fixed number of discrete 

intervals. 
For illustration purposes, the above problem is solved 
using different values of the delayτ , Q2, R, final 
time, fk , and upper and lower bounds of the states and 
control. Table (1) summarizes the  results obtained for 
the simulated cases. Fig.1, and 2 show the state and 
control trajectories for case (1). Whilst Fig.3 and 4 
show the results of case (4). 
 
 
5   Conclusion 
In this paper, linear quadratic discrete optimization 
problem with time delays and system constraints is 
investigated. A new algorithm is developed for 
handling such a complicated problem. It is shown that 
within the proposed procedure, it is neither required to 
increase the dimensionality of the state vector due to 
time delays nor to use Kuhn-Tacker parameters for the 
inequality constraints. Extensive simulation results 
showed that, if the problem has a feasible optimal 
solution, the algorithm can hit this solution while 
satisfying system constraints. It has been noticed that, 
different factors affect the convergence rate of this 
algorithm. More investigation is required in the future 
to detect how these factors can be specified to get the 
best convergence rate of the algorithm. 
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Table 1:  Summery of Simulation Results 

 
Case No.   Tf Q2 R τ xmin xmax umin umax No of itrations

1 6 1 0.5 1 open open open open 100 

2 6 1.5 0.5 1 x (2)>-2.5 open open open 5305 

3 6 11 0.5 1 x (2)>-2.5 open open open 5432 

4 6 1 0.5 1 x (2)>-2.5 open open <33.0 225226 

5 6 1.5 0.5 1 x (2)>-2.0 open open open 8122 

6 12 1.5 0.5 5 x (2)>-1.0 open open open 11363 

7 6 1 0.5 10 x (2)>-2.5 open open open 4708 

8 6 1 1.0 1 x(2)>-2.5 open open open 10526 

9 6 1.5 0.5 1 open x (1)<5.85 open open 685012 

10 6 1.5 0.1 1 open x (1)<5.85 open open 136474 
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                        Fig.1: State Trajectories for Case (1)                         Fig.2: Control Trajectories for Case (1) 
 

                       
 

                  Fig.3: State Trajectories for Case (4)                         Fig.4: Control Trajectories for Case (4) 
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