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Abstract: - This contribution details a state space model for a Custom Power component, the Dynamic Voltage 
Restorer (DVR), for steady state analysis. An efficient time domain methodology is applied which allows a swift 
computation of the periodic steady state solution for the DVR and the entire distribution network by 
extrapolating the solution to the limit cycle and thus to the steady state. This is achieved with the application of a 
Newton technique based on a Numerical differentiation (ND) procedure. Comparisons are shown in terms of 
computer efficiency against the conventional Brute Force (BF) solution obtained using the Fourth-Order Runge-
Kutta numerical integration method. 
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1   Introduction 
At present, voltage depressions or sags are considered 
the dominant disturbances affecting power quality in 
distribution systems [1]. It is understood that a 
voltage sag is not as damaging to industry as along or 
short interruption. However, there are far more 
voltage sags than interruptions the total damage due 
to sags is still larger. Short interruptions and long 
interruptions originate in the local distribution 
network. However, voltage sags at equipment 
terminals can be due to short-circuit faults hundreds 
of kilometers away in the transmission systems. A 
voltage sag is thus much more of a “global” problem 
than an interruption [2]. The Dynamic Voltage 
Restorer (DVR), a member of the Custom Power 
components [3] is at present regarded as the most 
efficient device available to solve voltage sag 
problems [1]. This is a power electronics controller 
which protects sensitive loads against temporary 
voltage interruptions due to sags/swells generated at 
the power plant supply [4]. During a voltage 
depression, the device supplies reactive energy to the 
distribution system for sag compensation [1]. The 
DVR has the capability of independently generating 
of absorbing controllable real and reactive power at 
its alternating current terminals [4]. The first series 
dynamic voltage restorer based on inverter 

technology was installed in 1994. Since then several 
more have been installed throughout the world. The 
applications have been on both low-voltage and 
medium-voltage applications, with load rating from 1 
MVA to 6.5 MVA. Examples are the installations by 
Duke Power, USA, in 1996, Powercor, Ltd, Australia, 
in 1997 and Scottish Power, Sotland, with 2 MVA 
and 4 MVA ratings respectively [5]. The DVR has 
been commissioned for correcting voltage sags/swells 
in these systems. Fig. 1 illustrates a typical DVR 
diagram. It can be observed that the DVR injects 
appropriate phasor voltages in each phase through 
injection transformers connected in series [6] and in 
synchronism with the distribution feeders [7]. 
 

 
Fig. 1.  Typical schematic of a single-phase DVR. 
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2   State space DVR model 
Two different DVR structures have been proposed 
[4]. In the first one, a capacitive filter is connected at 
the secondary side of the injection transformer, e.g. at 
the distribution system side. This prevents switching 
frequency harmonics from entering the system. The 
main drawback comes from the fact that the direct 
connection from the Voltage Source Inverter (VSI) to 
the injection transformer primary side results in 
transformer circuit losses, since the flux variations of 
high frequencies produce important losses increments 
in the transformer core. To avoid this, a second 
structure is used were the LC filter is located at the 
primary side of the injection transformer and the 
secondary transformer side is directly connected to 
the distribution feeder, as shown in Fig. 1 [4]. This 
filtering arrangement is preferred, as it is known that 
locating the filter closer to the harmonic source 
results in an adequate strategy for harmonic 
mitigation [1]. This structure is used in the present 
contribution. 
    The DVR operation is based on solid state power 
electronics inverter commuters with modulating 
width pulses (PWM) [4]. The VSI syntheses the 
injection voltages required for sags compensation. 
The filter at the primary side of the injection 
transformer attenuates the high order harmonics 
produced by the inverter commutation, while the 
injection transformer is used for increasing and 
coupling to the distribution system the injected 
voltage [1]. 
   The Fig. 2 illustrates the single phase DVR 
equivalent circuit with an LC filter at the primary side 
of the injection transformer. Here the DVR harmonic 
filter has an inductance Lf and a capacitance C. The 
inductance LT represents the leakage inductance of 
the injection transformer. The VSI commutation 
losses are represented by the resistance Ri, the VSI 
pulse width modulation is given by the variable 
voltage source v0 = vdc U where vdc is the VSI direct 
current voltage and U is the inverter commutating 
state. The current source is is assumed to be an 
independent forcing function in the equivalent circuit 
[4]. 

 
Fig. 2.  DVR equivalent circuit with LC filter. 

The state space framework allows representing the 
DVR behavior with a set of differential equations [7]. 
Defining the state vector [ 0

T
c ]x i v= , a 

mathematical model describing the DVR dynamic 
behavior is obtained from Fig. 2 as,  
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The supplied or absorbed DVR voltage is,  

dt

di
Lvv s

Tcdvr
−=      (2) 

 
The total voltage delivered to the sensitive load is, 
 
         (3) 

dvr
vvv +=

12
 
The corresponding phasor diagram is illustrated in 
Fig. 3.  

 
Fig. 3.  Phasor diagram describing the DVR operation. 

 
Where V1, V2 and Vdvr are the magnitudes of the 
supply voltage, load-side compensated voltage and 
the DVR injected voltage, respectively. Besides,  I, φ, 
δ and α represent the load current, the load power 
factor, the supply voltage phase angle and the 
advanced load voltage phase angle, respectively [7]. 
 
 
3   Extrapolation to the limit cycle 
The behavior of nonlinear components or loads can 
be described in the time domain by a set of Ordinary 
Differential Equations (ODEs) of the form, 
                                               

               (4) ),( txfx =
•

 
where x is a state vector of m elements xk. If a driving 
force of period T is assumed, then f(.,t) is a T-periodic 
vector.  The steady state x(t) is in addition periodic 
and can be represented as xk in terms of other periodic 
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element of x or in terms of a T-periodic function [8]. 
Before reaching the limit cycle [9] the cycles of any 
transient orbit are relatively close to it, so that a 
Newton method can be used to extrapolate the 
solution to the limit cycle. In [8] details are given on 
the procedure to transform a nonlinear problem (4) 
into a Newton problem ( ) xtJx ∆=∆ .The extrapolation 
of the solution to the limit cycle is achieved with the 
recursive equation [8], 
 

( )1i i ix x C x x∞ += + −          (5) 

where, 
 

( ) 1C I −= −Φ      (6) 
 
x∞   state variables at the limit cycle 

ix  state variables at the beginning of the base  
             cycle [8] 

1ix +   state variables at the end of the base cycle 
Φ,C,I  identification, iteration and unit matrix,  
             respectively. 
 
 The solution of (5) implies a quadratic convergence 
process if Φ and C are updated for each evaluation of 
x∞ and linear for their single or partial iterative 
evaluation [8]. The matrix Φ is of  order, where 
n is the number of state variables. Usually J(t) can be 
analytically obtained, but this is not always the case, 
in special with highly nonlinear or commutated 
components. Alternatively Φ can be obtained by 
columns by the sequential perturbation of state 
variables , where

n n×

ii ex ε+ ε  is a small number, e.g. 
10-6 and  is the column i of the unit matrix I. In this 
investigation a Numerical Differentiation (ND) 
method [8] was used for this purpose. 

ie

 
 
4 Test Cases 
4.1   System without DVR 
The electric network illustrated by Fig. 4 contains 
two generation sources, represented as sinusoidal 
functions of 1.0 p.u. amplitude, six nodes, six 
transmission lines represented by simplified R-L 
branches, three electric arc furnaces, two shunt 
capacitors connected to nodes 3 and 5 for reactive 
power compensation, two nonlinear magnetizing 
branches a TSC connected to node 2 with a switching 
angle of 120○ and a distribution transformer 
connected to node 3, in parallel with an arc furnace. 
A convergence criterium of 10-10 p.u. between 
successive estimations of x∞ is used. Appendix A.1 

gives the network parameters used for the test 
network. 
 

 
Fig. 4.  Test network 1. 

 
The system dynamic behaviour is represented by a set 
of eighteen ODEs. The Table 1 shows the results 
obtained for the time domain solution of the test 
network, given as maximum errors obtained during 
the BF and ND processes and number of cycles (NC) 
needed to reach the limit cycle and thus the periodic 
steady state solution. The conventional BF method 
required 307 cycles  to reach the limit cycle, whereas 
the ND method needed 84. This represents the 27% 
of those needed by the BF procedure.  
 

Table 1.  Maximum errors during BF and ND solutions 
NC BF ND 
1 3.598301E+00 3.598301E+00 
2 1.432803E+00 1.432803E+00 
3 2.564709E+00 2.564709E+00 

   
8 1.142138E+00 1.142138E+00 
27 2.197498E-01 6.603436E-01 
46 5.312626E-02 1.147981E-03 
65 1.058870E-02 1.856051E-08 
84 3.423970E-03 2.842171E-14 

   

307 9.761014E-11  
 
The Fig. 5 illustrates the voltage behaviour at the 
distribution transformer terminals. The 0.8 p.u. 
waveform represents a significant voltage depression 
due to the arc furnace operation. The harmonic 
spectrum is illustrated by Fig. 6 with the third, fifth, 
seventh, ninth and fifteenth harmonics being of 17, 3, 
1, 0.7 and 1.3%, respectively. 
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Fig. 5.  Time domain voltage in distribution transformer. 

 
Fig.  6.  Voltage harmonics in distribution transformer. 

 
4.2    System with DVR 
The test system of Fig. 4 is now solved without a 
distribution transformer and having a DVR instead, 
as shown by Fig. 7. This DVR is connected to stand 
voltage sags caused by the operation of the arc 
furnace. The system dynamics are represented by a 
set of twenty ODEs. Appendices A.2 and A.3 give 
the network parameters and the state space equation, 
respectively, for the electric system. 
 

  
Fig.  7.  Test network 2. 

 
Table 2 summarizes the results obtained during the 
time domain solution process of the analyzed test 
network, in terms of the number of cycles needed to 
achieve the limit cycle and thus the steady state 
solution. It can be noticed that the BF method 
requires 584 cycles, whereas the ND method 113, 
corresponding to 19% of those needed by the BF 
procedure. 

 

Table 2.  Maximum errors during FB and ND solutions 
NC BF ND 
1 4.429466E+00 4.429466E+00 
2 3.035021E+00 3.035021E+00 
3 3.595759E+00 3.595759E+00 

   

8 2.916176E+00 2.916176E+00 
29 1.009377E+00 6.025632E-02 
50 9.202380E-01 4.434352E-03 
71 3.353640E-01 1.514872E-05 
92 9.362810E-02 3.065731E-10 

113 3.526523E-02 9.103828E-15 
  

 

584 8.956033E-11  
The time domain solution process is detailed shown 
by Fig 8. The ND method is applied in t = 0.13 secs. 
It can be observed that the DVR effectively corrects 
the voltage depression produced by the electric arc 
furnace operation. The voltage amplitude is now 1 
p.u. with the third, fifth, seventh, ninth and fifteenth 
harmonics being of 3, 0.5, 0.2 and 0.3% respectively, 
see Fig. 9. 
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Fig.  8.  Evolution of time domain voltage in DVR. 
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Fig.  9.  Voltage harmonics at DVR terminals. 

 
 
5   Conclusions 
A swift steady state solution in the time domain of 
nonlinear distribution systems containing DVRs for 
sags/swells voltage compensation has been obtained 
with the application of a Newton method based on a 
Numerical Differentiation procedure.  
 
The impact on the system of the DVR for correcting 
voltage sags due to the electric arc furnace operation 
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has been illustrated. The time-varying network 
components, e.g. TSCs, arc furnaces and DVRs have 
been represented by state space models based on 
ordinary differential equation sets. 
 
Computer efficiency comparisons have been 
presented in terms of the numbers of periods (cycles) 
of time required by the BF and the ND Newton 
methods, respectively.  It can be conclude, from the 
analyzed cases, that the ND method requires on 
average 27% of the total numbers of periods of time 
needed by the BF technique to obtain the steady state 
solution. 
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Appendices 
 
A.1 Test network 1 Parameters 
 
R1=0.01, R2=0.012, R3=0.007, R4=0.018, R5=0.009, R6=0.015, 
RM1=0.1, RM2=0.1, 
L1=0.18, L2=0.11, L3=0.15, L4=0.22, L5=0.19, L6=0.13 
LH1=0.14, LH2=0.19, LH3=0.24, LH4=0.21, C1=0.36, C2=0.25, 
C3=0.31, C4=0.22 
km1=0.004, km2=0.0005, km3=0.005 
 
A.2 Test network 2 Parameters 
 
Ri=0.001, LF=0.15, CF=0.5, LT=0.2 
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A.3  State space equation for the test network 2 
 

BuAxX +=
•

 
(A.1) 

 

(A.2) 
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