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Abstract: - Dynamical behavior of some electronic circuits involves signals with widely separated rates of 
variation. Numerical solution of ordinary differential systems describing such circuits may be achieved in an 
efficient way using multi-rate methods, which use different step sizes for each subsystem. In this paper we will 
test the performance of two multi-rate Runge-Kutta algorithms in terms of numerical stability and computational 
speed. Being similar to the previous study done in [6], the results for linear stability analysis here presented are 
much more coherent with the characteristics of the methods. 
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1   Introduction 
Transient analysis of an electronic circuit is usually 
expressed by an initial value problem of the form  
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where  is the active components vector and 
the latent components vector. The efficiency of th
methods presented in this paper is verified onl

 a  (1) 
where  is the solution. This system of ordinary 
differential equations (ODEs) can be numerically 
solved by time-step integration, which is a classical 
technique that is commercially used by all SPICE like 
simulators. However, when integrating systems 
whose components evolve at different time scales one 
would like to use numerical methods that do not 
expend unnecessary work on slowly changing 
components. In such cases traditional time-step 
integrators become inefficient and numerical schemes 
with different time-step sizes are required. For 
example, in highly integrated electronic circuits 
normally only a small part of the elements is active, 
whereas the major part is latent. This latency can be 
exploited by multi-rate methods, which integrate 
components of the slow subsystem with a larger step 
length than the fast subsystem. 
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     Let us consider (1). If we split this system into 
active and latent subsystems we obtain 
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there is small number of fast changing components, 
i.e., if Ay  is a small subset of y . It is so because 
while the active components Ay  are integrated with a 
small step size h  (microstep), the latent components 

Ly  are integrated with a large step size H  (macro-
step). The number of microsteps within a macrostep 
is m , thus 

( )1/ , .h m H m= ⋅ ∈N  
Throughout the integration process the partition into 
fas and slot w components may vary with time, as 
well as 

lt Rate Runge-Kutta Methods 
et us consider two Runge-Kutta (RK) methods [5], 

 
nd 

m . 
 
 
2   Mu i-
L
[8], that can but do not have to be the same,
expressed by their Butcher tableaus ( )cAb ,,  a
( )cAb ,, , for integrating Ay  and Ly , respectively. 
The resulting multi-rate Runge-Kutta (MRK) method 
for the numerical solution of (2) is defin llows 

• the active components Ay  are given by 

ed as fo
[6]:  
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• the latent components  are given by 
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     As we can see the coupling between active and 
latent subsystems is performed by the intermediate 

values stage iAY ,
~

 and iLY ,
~

. e There ar several 
strategies for computing this values, like for example 

re 

the ones suggested by Günther and Rentrop in [3] and 
[4], but the algorithms studied and tested in this paper 
are the ones mo recently posed by Kværnø and 
Rentrop: MRKI and MRKII. MRKII is more robust 
than MRKI and all details of these two algorithms 
can be viewed in [7]. They were omitted here for 
brevity. We have also considered for ( )cAb ,,  and 

pro

( )cAb ,,  the same method: the Bogacki-Shampine 
embedded Runge-Kutta method [1].  
 
 

bility  
Numerical stability properties of va
3   Sta

rious multi-rate 
chemes have been discussed by several authors. 

ost of these discussions (including 
 in [6]) are not very detailed, nor 

s
Unfortunately, m
the one presented
very conclusive, and until now a concise theory is 
missing. 
     The absolute stability properties of an integration 
method are usually studied by applying the method to 
the scalar test equation yy α=' , with α −∈C . 
Doing so for a standard Runge-Kutta me e thod, th
solution after one step h  is given by 

( ) ,01 yhRy α=  
where ( )αhR  is the stability function of the method. 
The method is stable if and only if ( ) 1<αhR  [8]. 
However, multi-rate s ech mes require at least two 
components, so the linear differential system 
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may be an appropriate test problem. 
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are satisfied, then no extra conditions are required to 
ensure that both eigenvalues of Α  have negative real 
parts. The parameter γ  can en as a measure for 
the coupling between the equations and we also 
define 

be se

2211 /αακ =  as a measure for the stiffness of 
the system. 
     The numerical solution of (3) performed by the 
algorithms MRKI or MRKII after one compound step 
(1 macrostep H  for Ly  and m  microsteps h  for 

Ay ) can be expressed by 
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where 

⎡⎤⎡ yy ⎤

Κ  is a m trix th  depen  on a at ds H , h , Α  and 
the version of the MRK algorithm.  depend 

condition and for fixed step lengths 
 It doesn't

on the initial H  
and  it remains constant throughou  
process. Thus, for example, from 

h t the integration
01 yy Κ=  and 

12y yΚ=  it is possible to find Κ . e et d is 
stable if and only if the spectral radius 

Th m ho
( )Κρ  of Κ  

satisfies ( ) 1<Κρ . 
     Step sizes h  and H  are chosen to ensure stability 
for the uncoupled system ( 12 = )= 021αα , i.
ensure tha

e., to 
t the stability functions ( )11αhRA  and 

( )22αHRL  satisfy the conditions ( ) 1hRA  and 11 <α
( ) 122αHRL < . In the case of the Bogacki-

Shampine method that means [8] 054.2 11 <<− αh  
and 054.2 22 <<− αH , th 54.2at is to say, <H  
and κ≥m  if, with no loss of gener make ality, we 

122 −=α . The question is to know how the coupling 
γ  between the t

n
wo systems affects the stability of the 

MRK and in what way it depends o  κ , H  and 
xperimental results ionally in
LAB® 

of some s

m . 
     E obtained computat  
MAT are shown in Fig.1, where we have plots 

tability regions for 1=κ  and 10=κ . The 
ethods are stable below the boundaries and unstable 

above and as it can be seen these stab y regions 
m

ilit
become smaller with increasing κ , γ  and m . We 
have also tested other values of κ  larger than 10 and 
we obtained similar results with smaller regions (we 
just omitted them here for brevity). From the above 
we conclude that increasing the stiffness of the 
system, the coupling between the parts, or the number 
of microsteps, we force the methods to use a smaller 
macrostep H . As we can see in Fig.1, MRKII is 
more robust than MRKI because it has larger stability 
regions. According to the performance of both 
algorithms, this result is more coherent than the one 
presented by Kværnø in [6]. 
 
 

⎤
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If the 
assumptions 
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4   Sample Application  
 
4.1 Electronic Pulse Generator  
In order to test the perfor
o

mance and the efficiency of 
ur multi-rate algorithms an electronic pulse gene-
tor with MOSFETs was simulated with MRKI and ra

MRKII. The schematic of this circuit is shown in 
Fig.2. 
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Fig.5. Pulse generator 

 
     This kind of circuit is commonly found in digital 
systems and it generates a positive pulse on its output 

rom state 1 (high) to state 0 
(low) on its input. It is constituted by an odd number 

 of logical inverters connected in chain, followed 
 a NOR gate. The output of each inverter is the 

of the next inverter and the charging and 
discharging of the capacitors  produces delays in 
the run time of the signa  is the logical 
negation of a phase shifted version of the input 
and the output  is the logical NOR between 
and 
     In all our tests we have considered VDD=5V, 
R=4.7kΩ and C=0.2pF. The mathematical model we 
have adopted for the MOSFETs was the one 
suggested by Kværnø and Rentrop in [7]. 
 
4.2 Numerical Simulation Results  

he circuit with

when detects a transition f

N
by
input 

C
l. Thus, Nv

iv , 
Ov iv  

Nv . 

T  51=N  inverters was simulated in 
®MATLAB  from 0=t  to ns, for an input i  

transition at 1
40=t v

=t ns. The numerical solution Ov  is 
shown in Fig.3 and the overall results of this 
simulation are presented in Table 1. In both algori-

unstable
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thms, MRKI and MRKII, we have included step size 
control, stiffness detection and partitioning strategies, 
whose technical details can be seen in [9]. 
 

 
time1       number of steps   error in Ov  

 (sec) rejected macro micro   
∞

⋅    
2L

⋅

MRKI 1.37   8  142  406 0.0048 0.0038 5
MRKII 2.15    60  135  616 0.0034 0.0029

Table 1. Numerical simulation results 
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5 sio
After sev uantities 

f logical inverters and different integration intervals, 
we can say that in general both MRK methods show a 
good performance when solving our sample circuit. 
However, the MRKII algorithm leads to an increase 
of the computational work, once the total time for 
obtaining the numerical solution was in all cases 
bigger than in MRKI. In Section 3 we saw that the 
MRKII was a more stable method, nevertheless this 
stability gain implies a consequent loss of computa-
tional speed. So, due to our opinion the MRKII 
algorithm must be chosen over MRKI only in stiff 
problems or when the coupling from the active to the 
latent part is strong. 
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