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Abstract: This paper deals with the characterization of the static mechanical behaviour of an energetic material. Due to 
the constituents (crystals and a polymeric binder), the behaviour is complex. Therefore, a complete experimental 
protocol and a model have been developed. The behaviour is described using a general Maxwell model in which all the 
branches are affected by isotropic damage. The first branch takes into account an elastic-plastic behaviour. The yield 
stress evolution is described by a parabolic criterion and by an isotropic hardening law. The plastic flow rule is 
nonassociated. The other branches are viscoelastic. A genetic algorithm has been used to optimise the parameters. At 
last, comparisons between the model and the experiments are proposed. 
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1   Introduction 
The material is made of organic and energetic crystals 
mixed with a few percentage of a polymeric binder. 
After an isostatic compaction forming process, the 
material has a small porosity of a few percent. Samples 
can be machined in several geometric shapes, which are 
more than ten times the length of the material 
heterogeneity. 
 
In order to survey the possible influence of aging on the 
behaviour of this material, an accurate determination of 
the mechanical properties has to be done. Unfortunately, 
this material being available in small amounts, the 
characterization must be made using a reduced number 
of standard tests. An unusual experimental procedure is 
proposed in this paper for this kind of material. When 
monotonic loading paths were used to determine for 
example the influence of the strain rate, each sample is 
submitted to complex loading paths including relaxation, 
recovery and cyclic conditions. 
The temperature-dependence is out of the scope of this 
paper, therefore all the tests reported here have been 
performed at room temperature. 
The observation of loading-unloading diagram on 
figure 1 shows some of the main features of the material, 
and entails specific arrangements for the mechanical 
tests. 1) Hydrostatic pressure sensitivity: this influence is 
related to the material plastic behaviour. To take it into 
account, an initial hydrostatic compression loading path 
(0 MPa, 5 MPa and 10 MPa) is made before the run of  
an uniaxial compression load. 2) Viscosity: different 
strain rates (5.10-6s-1 to 10-3s-1) have been used to 

observe such effect. The parameters of the viscoelastic 
part of the behaviour have been determined using a 
DMA apparatus (Dynamic Mechanical Analysis). 3) The 
plastic strains are determined using relaxation and 
recovery delays. 4) Initial elastic behaviour: standard 
tests made in various material directions show an initial 
isotropic behaviour. 5) Damaging: systematic cyclic 
loading-unloading programs have been performed. 
6) Dispersion: to ensure a minimum statistical validity, 
each loading program is repeated five times. 
The whole process of characterization is described in the 
second part of this paper. 
 
This experimental process provides a numerical data set 
from which the material characterization can be drawn. 
The main models available in the literature ([1-3]) for 
this kind of material have been developed for transient 
dynamic behaviour and are not adapted for a quasi-static 
study. For example, the influence of the pressure is 
omitted, even as the difference of behaviour observed in 
tension and compression loading paths.  
The Maxwell model we have chosen is close to the 
constitutive law proposed in [2] (fig. 2). Several 
damageable viscoelastic branches and one damageable 
elastoplastic branch are used. The main difference with 
Bennett and co-workers model is about the arrangement 
of the branches, which evolutions are here related to the 
strain coming from the global equilibrium state. 
The determination of the plastic (resp. viscoelastic) 
behaviour is described in the third (resp. fourth) part of 
this paper. In particular, a genetic algorithm has been 
used to optimize the determination of the viscoelastic 
parameters. An extensive presentation is proposed in the 
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part 4 of this paper. The part 5 deals with the damage 
rule and the proposed failure threshold. It could be noted 
that the characterization of the plasticity, the damage and 
the viscosity are uncoupled. The damage rule determined 
from the plastic analysis is assumed to affect also the 
viscoelasticity. 
Lastly, some comparisons are presented between the 
model response and the available experimental data. 
 

 
Fig. 1: Material behaviour in tension (positive stress), 
compression (thick line) and for a triaxial compression 

test at 10 MPa (thin line). 
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Fig. 2: Rheologic 
damageable mo

 
 
2   Test procedu
Cylindrical samples 
are used for compre
length with a rectang

tension tests. A 100 kN machine is equipped to perform, 
control and record strains and stress. 
The samples are equipped with opposite pairs of strain 
gages whose outputs are averaged (after estimation of 
the heterogeneity of the strain) to provide the 
longitudinal and lateral strains. Stress is obtained from 
the longitudinal force applied by the machine. The 
triaxial compression experiments have been made using 
a tool usually used for geomaterial characterization 
(hermetic cell, pressure controller and water). The 
tension experiments are realized without a hydrostatic 
pressure. 
 
The loading program is illustrated on figure 3. The first 
stage (when this one exist) is a hydrostatic loading phase 
(segment OA1). Then, five or six uniaxial loading-
relaxation-unloading-recovery cycles are done (loop 
AiBiCiDiAi+1). The test is driven by one of the two 
longitudinal gages. Relaxation times have been defined 
to guarantee an almost complete relaxation of viscous 
stresses. It has been established that a 30 mn (resp. 
50 mn) time for the relaxation (resp. recovery) phases 
are adequate. 
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Fig. 3: Cyclic compression under 5 MPa of pressure: 

stress versus longitudinal and lateral strains. 
 

Using the recorded measurements, the following data are 
picked up. At point Ci, the strains and the stress define a 
point of the current yield surface of the plastic branch 
(the viscoelastic branches are relaxed). The slope Eep of 
the line CiAi+1 defines the current elastic modulus of this 
branch. The segment Ai+1Gi, whose slope is assumed to 
be Eep/(1-2ν), gives the current plastic strain. If a 
constant bulk modulus is assumed during the test, 
then 1i1ip AAOG +==ε . 



Some DMA experiments have been realized in 
compression using samples of 50 mm long, and a cross 
section of 4x4 mm2. A small initial preload of 10 µm and 
for a very small strain amplitude of 5 µm are used to stay 
in the viscoelastic domain. The range of frequencies 
going from 0.004 to 40 Hz, the strain rate ranges from 
2.10-6 s-1 to 2.10-2 s-1.  
 
 
3   Elastoplasticity 
The macroscopic stress tensor σ  is defined as the sum 

of the stress of each branch: 

∑
=

σ+σ=σ
n

1j
jep , 

where the subscript “ep” (resp. “j”) denoted the 
elastoplastic branch (resp. the jth viscoelastic branch). An 
additive decomposition is assumed for the strain of each 
branch between an elastic part (superscript “e”) and a 
plastic (resp. viscous) part (superscript “p” or “v”): 

p
ep

e
ep ε+ε=ε elasto-plastic branch, 

v
j

e
j ε+ε=ε  visco-elastic branches . 

 
3.1   Elasticity 
The elastic part is supposed linear damageable and given 
by the following equation: 

e
epep :)d1( ε−=σ E , 

where E is the elastic tensor of the virgin material and d 
a damage parameter (see below). To identify the elastic 
mechanism, we need to isolate the elastoplastic 
behaviour (in particular to be sure that the viscous 
stresses are relaxed). To this end, the end of the 
relaxation phase is used in conjunction with the end of 
the recovery part of the cyclic tests. These points are 
used to determine the elastic modulus and its evolution. 
For the Poisson’s ratio, the longitudinal and transversal 
strains measurements are used. Then, a value of 0.3 is 
obtained for the Poisson’s ratio when an initial Young’s 
modulus of 3000 MPa is determined at room 
temperature. The previous Poisson’s ratio is also used 
for the viscoelastic branches. 
 
3.2   Yield criterion 
A review of the main criteria used to describe isotropic 
plasticity is presented in [4]. A criterion has been 
developed at Cambridge University in view of soil 
modeling and is famous to-day as the “Cam-clay” model 
[5]. Numerous adaptations of this model were then 
developed for various applications [6-8]. As the forming 
process of the material is an isostatic compaction up to a 

pressure of 200 MPa (which amplitude will never be 
reached in quasi-static applications), the criteria is 
supposed open on the hydrostatic negative axis. Open 
threshold are usually derived from Mohr-Coulomb, 
Mises-Schleicher [9], Drucker-Prager [10] and more 
recently Hoek-Brown formulations [11]. An unified 
model is proposed by Aubertin and co. [4] in order to 
reproduce all the kinds of criterion (elliptic, parabolic, 
hyperbolic). Lastly, Raghava and co. [12] applied the 
Mises-Schlecher‘s threshold to polymers. The evolution 
of this criterion is described by two hardening variables, 
associated to tensile and compression response. 
 
Due to a lack of data about the nature of the hardening 
mechanisms, an isotropic hardening parameter, denoted 
k, is introduced in the model. The short softening 
behaviour which is observed during the compression 
tests (tensile experiments have shown a brittle failure 
process) is ignored. Then, a saturation of the hardening 
mechanism at the maximum stress is taken into account 
in the model. 
A nonlinear plasticity criterion reproduces the evolution 
of the yield stress (fig. 4). The following relation is used: 

( ) 0kk,P,Qf eq =−σ= , with P)k(bQ 2
eq +=σ  

where dd :)31(Q σσ=  is the octahedric stress, dσ  
the deviatoric stress, P the pressure and b, a function of 

the hardening parameter, defined by:
)k(X

²k
)k(b = . 

The set of yield curves is completely defined as soon as 
the function X(k) and the hardening law are defined. 
The following guidelines help for the determination of 
the function X(k). First, it is assumed that the yield 
curves do not cross themselves in the P-Q plane, each 
one being embedded in those of higher levels, all of 
them being embedded in the extreme curve. This is a 
necessary - but not sufficient - condition for the 
phenomenon to be governed by a unique state variable 
which is the isotropic strain-hardening parameter.  
Elementary algebra shows that the following relation 
satisfies the previous assumption: 

0m

0
0m0 kk

kk
)XX(X)k(X

−
−

−+= , 

where k0, X0, km and Xm are four material parameters.  
 
Then, the two parameters Xm and km are determined 
using the ultimate yield stress curve relating the 
maximum stress states in the P-Q plane. The following 
values are obtained: X0=1.5 MPa, Xm=1.62 MPa, 
ko=1 MPa and km=3.45 MPa. 
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Fig. 4: Yield criterion joining the maximum relaxed 

stresses (saturation). 
 

The hardening parameter k has to be related to an 
effective plastic strain variable, denoted p. In order to 
obtain an unique curve k(p) for all the available 
experimental data available, p is defined as the 
cumulated deviatoric plastic strain (fig. 5). For the 
hardening law, the following hyperbolic relation is used 
to interpolate the data: 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++
−−+=

2
21

0m0 pcpc1

1
1kkkk , 

where c1 and c2 are two parameters. The determination 
of the parameters gives c1=450 and c2=1.4 105. 
 

 
Fig. 5: Hardening parameter k versus the effective plastic 

strain p. The saturation of the hardening is observed. 

3.3   Flow rule 
The flow direction is determined using the ratio between 
volumic and deviatoric effective plastic strain rates. This 
ratio, usually called “dilatancy” and denoted here β, is 
given by the following relation: 

pD
ep

pV
ep

ε

ε
=β
&

&
, 

with )(tr p
ep

pV
ep ε=ε &&  and pD

ep
pD
ep

pD
ep :3 εε=ε &&& , pD

epε& being 

the deviatoric plastic strain rates. 

The flow rule expression is then: 

)1(

3
.I

3Q3 2

d
epp

ep β+⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ β
+

σ
λ=ε && , 

λ&  being the plastic multiplier and the plastic flow 
direction being normalized. 
The dilatancy β measured during the experiments is 
plotted on the figure 6. A linear fit allows to determine a 
constant value for β (0.3). As a result, a nonassociated 
plastic law is justified. 

 
Fig.  6: Effective volumic plastic strain versus effective 
deviatoric plastic strain for whole tests. The slope of the 

mean curve determine the dilatancy parameter β. 
 
 
4   Viscoelasticity 
The DMA experiments are used to make a first 
identification of the linear viscoelastic parameters. The 
stress response to an unit sinusoidal strain solicitation for 
this kind of model can be break up in an in-phase part 
(related to the storage modulus Ereal) and a out of phase 
part (related to the loss modulus Eimag). The relations 
between these two quantities and the Young’s modulus 

Proceedings of the 4th WSEAS/IASME Int. Conf. on System Science and Simulation in Engineering, Tenerife, Spain, December 16-18, 2005 (pp106-113)



and the viscosity parameters are given by: 

( )
( )∑

= ωτ+

ωτ
+=

n

1i
2

i

2
i

iepreal .1

.
EEE  

( )
( )∑

= ωτ+

ωτ
=

n

1i
2

i

i
iimag .1

.
EE  

with 
i

i
i E

η
=τ , where ηi is the viscosity parameter and ω 

is related to the pulsation. 
In order to limit the number of parameters (here n=10) 
for a more accurate determination, the following 
relations are proposed: 

( )21n
1i

1 AA
i 10η +

−
−

 =  

( )
⎟
⎠
⎞⎜

⎝
⎛ −+= −

−

1eAAE 1n
1i

5A
43i  

Then, the number of unknowns decreases to five (A1 to 
A5). These relations allow reproducing at the same time 
the real and the imaginary modulus. A first 
determination of the Ai has been obtained using DMA 
measurements: A1 = 5, A2 = 1.3, A3 = 180, A4 = 10.8 and 
A5 = 3.3. For these parameters, the maximum (resp. 
minimum) relaxation time is 4318 s (resp. 0.111 s).  
 
4.1  Genetic algorithm 
The previous set of parameters is used here to 
determine the bounds of each parameter. We are here in 
the case of a combinatory optimisation problem where a 
large number of solutions could be suitable. We have 
chosen to perform an inverse identification of the 
viscoelasticity parameters directly from the 
experimental tests. Classical optimisation methods, like 
conjugated gradient, have been dismissed because of 
the possible large number of solutions. Then, a genetic 
algorithm [13] has been used in this study. 
Genetic algorithms are based on the Darwinian 
principle of “survival to the fittest”. An initial 
population of a given size is created from a random 
selection of parameters values. Each parameter set 
represents individual chromosomes. Each individual is 
assigned of a fitness based on how well each individual 
chromosome allows it to perform in its environment.  
The algorithm produces new generations by applying 
three evolution operators: selection, crossover and 
mutation. For each generation, the fit individuals 
survive and the weak die. Evolution operators create 
new individuals (children) from two selected parents, 
and these children replace the weak individuals for the 
next generation. Successive generations are created 
until very fit individuals are obtained. This algorithm 
offers the advantage of exploring all the solutions space 
to find a global optimum of an optimization problem. A 

sensitivity analysis of the parameters is not required 
 
4.2   Objective function 
The objective function is a direct measure of the quality 
of a solution. The goal is here to minimize the gap 
between the experimental strain-stress curves and the 
corresponding simulated curves. Due to different times 
of recording during the experiments, we propose a 
fitness function that represents the spatial gap, weighted 
by the segment length Li between two consecutive data, 
in the stress-strain space, i.e.: 

( ) ( )
∑

∑=

=

ε−ε⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+σ−σ

=
ptsexpnb

1i
ptsexpnb

1i
i

i
2s

i
e
i

2
2s

i
e
i

L

L.E
2
1

Obj
 

where superscripts “s” and “e” respectively denote 
simulations and experiments. 
 
4.3   Selection 
The selection process is based on the objective function 
value. Individuals are ranked in a increasing order of 
their objective values and have a position called Pos. 
The following relation then assigns a fitness function to 
each individual: 

1N
)1Pos)(1SP(

2SP2)Pos(f
ind −

−−
+−=  

where Nind is the total number of individuals and SP is 
the selection pressure, i.e. the maximal value of the 
fitness function assigned to the best individual. The 
weakest individual has a fitness value of 0. We apply 
here a proportional selection technique. Each individual 
has then a probability to be selected which is given by: 

∑
=

= Nind

1j
)j(fitness

)i(fitness
Pi  

An individual with a nul fitness value has a nul 
probability of selection. The best one has the larger 
probability. 
 
4.4   Crossover and mutation 
After selection, two evolution operators are applied on 
individuals: crossover and mutation. Two probabilities 
Pc and Pm are respectively assigned to these operators. A 
number is randomly created between 0 and 1 for each 
individuals. If this number is lower than Pc, this 
individual becomes a parent, which is going to produce 
two children with another parent. The crossover consists 
to exchange the chromosome (which is a parameter 
value) between two parents. The resulting individuals 
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become two children. The choice of the chromosome 
results of a randomly generated mask. 
The second operator is the mutation. For each 
chromosome constituting an individual, a random 
number is generated between 0 and 1. If this number is 
lower than Pm, a random number is added to the 
chromosome. This number depends on the minimal and 
maximal proposed values. 
 
4.5   Results 
The simulation use the data corresponding at the end of 
load, the end of relaxation, the end of discharge and the 
end of recovery. From the values of the longitudinal 
strain and time in these points, the strain rate is rebuilt, 
constant by piece. The strain increment is then given 
from the strain rate and the step of time of the program. 
Let us note that only the longitudinal strain is imposed. 
The longitudinal stress and the transverse strain are 
recomputed from the response of the model. 
Pc and Pm have been respectively set to 0.8 and 0.05, 
which are common values for this kind of optimization 
problem. 60 generations constituted of 500 individuals 
have been performed and leads to the optimized values 
of the Ai parameters: A1=3.98, A2=1.64, A3=160.31, 
A4=16.15 and A5=1.21. 
 
 
5 Damage and fracture criterion 
5.1 Isotropic damage 
Assuming an isotropic damage, experimental data shows 
that the phenomenon regularly increases with the highest 
positive principal strain (figure 7). This observation 
indicates that the most probable damaging mechanism is 
the result of the development of internal micro-defects 
(cavities, cracks) with tension [14-19]. A damaging 
factor d is classically defined as: 

0

0

E
EEd −

=  

where Eo and E are the initial and current Young’s 
modulus. A constant Poisson’s ratio is assumed here. 
An hyperbolic relation is used to reproduce an average 
evolution of the damaging factor, providing that its value 
is bounded to 1. Experimental values of d immediately 
result from the measurements of E and the following 
relation: 

{ { ( )( )
{ { ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

ε+
+ε=

+=
+= I

3to1Itime
3

2I
3to1Itime

1
maxsupd1

1
-1.d  maxsup.d d  

where d1, d2 and d3 are three parameters. The subscript 
“+”  means “the positive part of the quantity”. 
The damage rule is reported in the figure 7. One can see 
that the model response is identified using the 

compression and tension measurements. The hydrostatic 
data are not taken into account because the pressure 
stops an eventually growth of the microcavities. The 
identified values are: d1 = 3, d2 = 1 and d3 = 100. 
 

 
Fig. 7 : Damage versus the maximum positive strain. 

 
5.2 Fracture criterion 
A threshold based on the damage level is not able to 
describe the ultimate data in tension and compression. 
So, two thresholds have been proposed. The first one 
describe the failure under tension loading path (the 
maximum effective stress is used) and the second one is 
based on the maximum positive strain (fig. 8). 
 

 
Fig. 8: Maximum positive strain versus the mean 

pressure. For the compression state of stress, a linear 
threshold can be used to determine the failure. 
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6   Model versus experiments 
The constitutive law has been implemented in the finite 
element code Abaqus/standard. The model is compared 
to experimental data with unloading cycles to access to 
the plasticity level and the damage level. Those seem 
quite well reproduced even if the transversal model 
response does not present enough damage in 
compression (fig. 9). This observation can be associated 
to an anisotropic damage (which has been neglected 
here). 
The plasticity branch reproduces very well the difference 
between traction and compression response (fig. 9-10). 
The rate effect is also quite well reproduced on the two 
compression tests even if the unloading curves do not 
present the same nonlinearity (fig. 9 and 12). In the same 
manner, the viscous effects in the triaxial test with 
10 MPa of confinement pressure (fig. 11) is 
underestimated. Certainly, those phenomenons are 
associated to an internal friction in the material. 

 

 
Fig. 9: Model versus experiment for the 

compression test at 3.10-6 sec-1. 
 

  
Fig. 10: Model versus experiment for the 

tensile test (3.10-5 sec-1). 

 

.  
Fig. 11: Model versus experiment for the 
hydrostatic compression test (3.10-5 sec-1). 

 

 
Fig. 12: Model versus experiment for the 

compression test (1.5 10-3 sec-1 ). 
 
The implementation of the constitutive law in the finite 
element code has allowed to compare simulations to 
more complex experimental configurations as three-
point bend tests and Brazilian experiments. For the sake 
of simplicity, these results are not reported here but are 
going to be detailed in a next paper. 

 
 

7   Conclusion 
An experimental procedure has been carried out to 
characterize a complex material behaviour. A 
multibranch viscoelastic plastic and damageable model 
and the corresponding identification procedure have 
been developed. A genetic algorithm optimisation  has 
allowed to find accurately some of the parameters. This 
model has been implemented in the finite elements 
software Abaqus using an user subroutine UMAT. The 
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comparisons between simulations and experiments show 
a good agreement. 
Our future works are now devoted to the improvement of 
the damage rule and of the failure threshold. Lastly, the 
anisotropy observed during the experiments has to be 
introduced in the model.  
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