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Abstract: -The object-oriented programming has been widely used in scientific computing since the 90s, including 
finite elements computations. The major consequence of it is a better maintainability and an easier extendibility of 
computational codes. In this paper, we advocate that the association of the natural high abstraction level of 
mathematics with an advanced object-oriented paradigm leads to a natural and a better organization of finite element 
codes. The approach is illustrated on an operator split method to solve an elastoplasticity problem. The implementation 
is done in Java. 
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1   Introduction 
The object-oriented paradigm has been widely adopted 
in the finite element scientific computing community. 
The main reason for the strong interest for object-
oriented technologies lies in the increasing size and 
complexity of the problems solved today. Most of the 
developments are today conducted under the C++ 
programming language. This approach has both 
advantages to support the object-oriented paradigm and 
to be efficient enough to deal with large scale 
computations. This is crucial from an industrial point of 
view. The practical interest of this kind of approach is 
that the researcher or the engineer can easily build a 
personal framework adapted to his problem: physical 
problem, numerical treatment, computational 
environment. This language has the major advantage to 
offer both a comfortable environment for object-oriented 
programming and a suitable numerical efficiency. 
Roughly speaking, the object-orientedness of the 
language tends to fasten the development and the 
maintenance of the codes, and the fact that the language 
is compiled ensures its performances. The development 
and the maintenance of code in C++ may lose interest 
for complex applications because of its complexity and 
to its strong dependence of the platform. Moreover, the 
language does not strictly enforce the object-oriented 
letting too many degrees of freedom to the programmer. 
We have shown in previous work that mathematical high 
level abstraction concepts developed in a single object 
concept leads to the design of new kind of tools in 
scientific computing (see e.g. [1] and [2]). The Java 
language is today used to implement the object-oriented 
paradigm in scientific computing (see [3] [4] and [5] for 
Java and e.g. [6] and [7] for references in C++).  

Beyond the Java programming language adopted in the 
approach, we propose in the present paper, advanced 
approaches in object-oriented programming enhance the 
global architecture of finite elements codes. More natural 
and secure codes can be designed (see [8], [9] and [10]). 
In section 2, the elastoplasticity problem and the 
operator split method adopted in the solution scheme are 
briefly recalled. In section 3, we briefly describe a 
typical mechanism available in Java, called interface. 
This mechanism permits to enhance the consistency of 
finite element codes from a mathematical point of view. 
In section 3, the typical implementation is described on 
this example. A numerical example is given in section 4. 
 
 
2   An Operator Split Method Applied To 
The Elastoplasticity Problem 
 
2.1 Basic principles of operator split 
Consider the following discrete equation where 

Ntx ℜ∈)(  is the solution of the initial-boundary value 
problem with appropriate initial and boundary 
conditions: 
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where A : NN ℜ×ℜ  is a linear operator  that can be split 
such as 21 AAA += . The exact solution of the problem 
at time htt nn +=+1  ( 0>h  is the time step) is 

nn xhAAtx ))exp(()( 21
1 +=+ . This problem can be 

approximated by the following problem: 
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The solution of problem 1 is taken as initial condition for 
problem 2. The solution of this two-step problem is 
defined by a product formula: 

nn xhAhAx )exp()exp( 21
1 =+  where )exp( 1hA  and 

)exp( 2hA  are he exact solutions of problems 1 and 2. 
This is not the solution of the initial problem, unless 1A  
and 2A  commute. This defines a first-order accurate 
algorithm (see [11] and [12]). We apply this solution 
scheme in a classical way to the solution of an 
elastoplasticity problem. The problem consists in finding 
an adequate operator split to obtain a converging stable 
algorithm.  
 
 
2.2 Definition of the Elastoplasticity problem  
We recall here the basic equations of the elastoplasticity 
in the case of perfect J2 plasticity. The initial boundary 
value problem is summarized Fig. 1. The problem 
consists in finding the displacement field u  and the 
stress field σ  with appropriate regularity conditions 
such as defined in Fig. 1 and Fig. 2. In Fig. 2, the strain-
stress relationship is summarized. An additive 
decomposition of strain is assumed. Perfect plasticity 
with an associated flow rule is considered. The yield 
condition is based on the second invariant of the 
deviatoric part of the stress field. More details about the 
model considered can be found in [12], [13]. 
 
 
2.3 Operator split applied to the elastoplasticity 

solution 
We adopt a strategy of operator split to solve this 
problem. The problem summarized Fig. 1 and Fig. 2 is 
split, first, in a linear problem, the classical linear 
elasticity, and second, in a nonlinear problem 
corresponding to the constitutive law; the illustration is 
given Fig. 3. The solution of the global problem is 
obtained through a product-formula algorithm: the 
solution of the linear elasticity is solved with the initial 
conditions from the second problem at the previous time 
step. The stress state obtained such a way is not 
consistent. It does not satisfy the yielding condition. This 
trial stress state is then taken as initial conditions for the 
plastic correction problem. The elastic predictor which 
corresponds to the first part of the algorithm admits an 
exact solution and is reduced to a simple geometric 
update. The theoretical aspects of this product-formula 

problems go beyond the scope of this paper and can be 
found in e.g. [11] and [12]. 
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Fig. 1 Initial boundary-value problem for elastoplasticity 
 
 
 
 
 
 
Perfect elastoplasticity (associated flow rule, Mises 
criterion) 

–  Additive decomposition of the strain tensor pe εεε &&& +=  

–  Yield condition : RJf −= )()( 2 σσ  

–  Flow rule 
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Where 2J  is the second invariant of the deviatoric part of 
σ . 

Fig. 2 Elastoplasticity constitutive model 
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Fig. 3 Operator split method applied to elastoplastcity 

 
 
3   A mathematical based advanced 
object-oriented implementation 
 
3.1 Advanced object-oriented techniques  
A description of basic concepts of object-oriented 
mechanism in the context of finite elements can be found 
in [14], [15] and [8] and references therein. In addition to 
the basic concepts, the Java language introduces new 
concepts such as the concept of inner class and the 
concept of interface. These new features permit the 
numerician to build safer and more robust computational 
applications, typically for complex finite elements 
applications. These mechanisms are thoroughly 
described and illustrated in [8], [9] and [10]. In this 
paper, we wish to focus on the interface mechanism. An 
interface is a reference type that is closely related to a 
class. It can be seen as a pure abstract class (roughly 
speaking a class that has no instance). It does not define 
any implementation but only specifications, i.e. only 
methods that are defined to be mandatory in a given 
class. A class is said to implement an interface, if and 
only if, the class exhibits an implementation of the 
methods specified at the level of the interface. As matter 
of fact, a class can inherit methods from a superclass, 
and must implement a set of methods imposed by the 
implementation of an interface. A complete description 
of the interface mechanism can be found in [17], and 
applications in the context of finite elements codes in [8] 
and [9]. 
 
 
3.2   Algorithmic consistency enforcement in finite 
elements: Application to elastoplasticity 
We apply this mechanism to the plastic corrector phase 
(Problem 2 in the operator split algorithm Fig. 3). The 
global framework will be detailed in a forthcoming 
paper [8]. This problem can be solved here using a 
classical return algorithm. This algorithm can be viewed 
as a backward Euler scheme. The algorithm is given 
under an incremental form in Fig. 4. The principle of the 
algorithm is to consider the elastic predictor step. If the 
stress state is outside the yield surface, the plastic 
correction is performed. It is worth noting that the 
algorithm can be performed locally overall the domain. 
From a practical point of view, in the context of finite 

elements applications, the correction step is classically 
performed at the level of gauss points (numerical 
integration points). More details about the algorithm can 
be found e.g. in [12] or in [16] for more technical details.  
It is obvious that this algorithm cannot be applied to any 
equation constitutive models. It is a restriction of a 
general return-mapping algorithm for the J2 plasticity. 
The programmer is in charge to maintain this 
consistency between the physical model, the numerical 
model and the implementation. The interface mechanism 
offers the programmer to enforce this global consistency 
at the level of the code. Thus, mathematical properties 
are implemented in a natural way, providing robustness 
through mathematical foundations. 
 
 
Problem at iteration i and step n+1 :  
• Given nσ  and  i

n dBd ∆=+    1ε  , find 1+nσ  
       ( 
–Compute trial stress (from elastic predictor problem) 
                     11 ++ +=+= n

el
n
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n
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–If  0)( 1 ≤+

tr
nf σ   then tr

nn 11 ++ = σσ   and stop 
 
–Else compute plastic correction 
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Fig. 4 Radial return algorithm for J2 elastoplasticity 
 
 
2.1   Principles of the implementation 
In this section, we pose the basic principles of a 
mechanism to enforce mathematical consistency in 
scientific computing applications. This is illustrated here 
in the context of finite elements, on the example of 
numerical integration of constitutive equations in a two-
step operator split algorithm. The object model is given 
in Fig. 5. In this example, the constitutive equations are 
represented by a generic class called Behavior. This 
class is the abstract class representing all the different 
types of constitutive laws. In this example, the subclass 
LinearElasticPerfectlyPlastic represents the typical 
constitutive model studied here: linear elasticity – 
perfect plasticity (yield criterion based on the 2J  
function). This class provides all the behavior needed to 
compute the components corresponding to this typical 
model. The abstract class Integrator represents all the 
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generic behavior of the different types of integrators, i.e. 
roughly speaking a single generic method called 
integrate. This method initiates the correction phase. 
The subclass RadialReturnAlgorithm strictly 
implements the algorithm posted Fig. 4. The latter 
partially describes a classical object-oriented model for 
constitutive law modeling. Here, we propose to enforce 
the integrability of the model of equations through the 
interface described Fig. 6. The interface Integrable 
specifies the methods needed by all the models of 
integrators: the computation of the constitutive matrix 
and the determination of the plastic condition (checking 
of the yield condition). The subinterface 
RadialReturnAlgorithm specifies the methods needed 
in the algorithm Fig. 4, i.e. the computation of the plastic 
correction. The last step is to define the class 
LinearElasticPerfectlyPlastic, subclass of class 
Behavior, to implement the interface 
RadialReturnIntegrable. The class 
LinearElasticPerfectlyPlastic implements the methods 
specified in both, the interface Integrable and the 
interface RadialReturnIntegrable. The programmer is 
in charge of the correct use of the numerical algorithm in 
the context of the model of equation. The class 
LinearElasticPerfectlyPlastic is given Fig. 7. The 
methods implementing the interface are: isPlastic 
(checking of the yield condition), 
computePlasticCorrection (computation of the plastic 
correction) and computeConstitutiveMatrix 
(computation of the constitutive matrix). A further 
extension of the code to implement a new set of 
constitutive equations is possible, if and only if, the 
programmer specifies and implements the solution 
scheme for the correction step of the global algorithm. 
The consistency of the code is then guaranteed.  
 
 

 
Object 

   Behavior 
    LinearElasticPerfectlyPlastic 
   Integrator 
    RadialReturnAlgorithm 
 

Fig. 5 Partial view of the class hierarchy for the 
constitutive equations description 

 
 
 
  Integrable 
   RadialReturnIntegrable 
 

Fig. 6 Hierarchical organization of interfaces for 
numerical integration 

 
Fig. 7 Detail of the class for J2 plasticity equations 

 
 
 
 
 
4   Numerical example: a clamped beam 
The code is tested on the example of a clamped beam 
submitted to a vertical load. The beam posted Fig. 8 is 
loaded with f. The load f is applied in one step. The 
characteristic of the material are: the Young modulus 

29 N/m 10  0.210=E  and the yield criterion 
26 N/m 10  346.41 =yσ . The results that are shown in 

Fig. 9 are in good qualitative and quantitative agreement 
with the one obtained with the code CAST3M (see [18]): 
stresses are similar and the vertical displacement of the 
bottom left corner is 2.18 10-1 m. Plane strains 
hypothesis are considered in this example.  
 
 
 
 
 
 

 
 
 
 

 
Fig. 8 Clamped beam 
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Fig. 9 Numerical application to a clamped beam 
 

4   Conclusion 
In this paper, we have presented a mechanism based an 
advanced object-oriented model to enforce the 
mathematical consistency of computational applications. 
The concept of interface provided by the Java language 
represents the convenient framework to design more 
robust and safer finite element codes. The approach has 
been illustrated on an elastoplasticity problem. An 
elastic-plastic operator split method is proposed as 
framework for the solution. We have focused in this 
example on the plastic correction step for which a 
numerical algorithm is mandatory to compute a 
consistent stress state. In the design proposed here, the 
implementation of the physical model (J2 
elastoplasticity) is clearly separated from the 
implementation of the numerical algorithm (radial 
return). The relationship is enforced by the interface 
mechanism implemented at the level of the set of 
equations defining the constitutive law. The algorithm 
has a generic implementation. The behavior, embedding 
the equations, implements the methods to compute the 
specific contributions. The mechanism of interface 
permits the programmer to enforce the consistency 
between both, the behavior and the algorithm. To go 
further, the Java language offers additional advanced 
object-oriented features, such as inner classes. Similarly, 
these mechanisms significantly enrich the abstraction 
capabilities of classical object-oriented approaches. 
Beyond the use of a the Java language, we advocate that 
high level abstraction programming concepts will have a 
growing interest in a near future to design the next 
generation of safe and reliable computational 
applications. In [1] and [2], the variational formulation 
derivation tools and finite elements symbolic forms 
associated to an automatic programming schemes has 
shown the possibility to introduce high level 
mathematical concepts in the design of finite elements 
codes. High level control features can be extended at the 
symbolic level. These ideas could merely be extended to 
the management of complex simulations in the broad 
domain of verification and validation of code. The 
integration of symbolic concepts directly embedded in 
the numerical simulation tools will permit to enhance the 
reliability of computational tools. Advanced oriented-
object concepts represent a key ingredient to achieve 
high level abstraction simulation tools. 
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