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`Abstract: - A new robust estimator based on the concept of uncertainty in the measurements 
is developed in this paper.  The uncertainty in the measurements is modeled via deterministic 
upper and lower bounds on measurement errors, which take into account known meter 
accuracies.  Inequality constraints are constructed to model the uncertainty in the 
measurements.  A solution point satisfying most inequality constraints is the objective of the 
proposed estimator.  Hence, this estimator is known as Maximum Constraints Satisfaction 
(MCS).  The Robustness and performance of the proposed estimator is discussed via 
simulated problems of simple regression examples and D.C. three-bus system.  Various 
scenarios of leverage measurements and bad data have been considered for further assessment 
of the performance of the MCS estimator.  In particular, it is shown that the (MCS) estimator 
performs significantly well in situation where collinearity exists in the measurements.  Results 
show that the proposed estimator is an accurate and reliable estimator. 
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1   Introduction 
In traditional power system state estimation, 
estimators based on statistical methods such as least 
squares and least absolute values, along with their 
variants, are well documented and have been widely 
applied.  Researchers have realized that 
measurements acquired from the field usually do not 
entirely satisfy the assumptions on which those 
estimators have been initially built upon.  Also, 
circumstances such as faulty measurements pose a 
serious threat to the quality of the estimator outcome.  
Hence, robust estimators have been introduced as an 
alternative, to eliminate or down-weigh the effects of 
faulty measurements (or outliers).  Normally, outliers 
occur quite frequently, as a consequence of high 
amplitude noise in measurements (e.g., due to 
induction during large transients), brief loss of 
measurement data and noise occurring due to 
unintended signal paths and measurements [1].  
Furthermore, many AC applications result in 
frequent measurement errors and “periodic noise”.  
Periodic errors are common in power electronic 
switched applications. 
 
Generally, robust estimators are those estimators that 
exhibit stable behavior (bounded bias and variance) 
under deviation from the assumptions on which they 
are based.  That way, any outliers would be identified 
and eliminated from the measurement set, prior to 

the estimation process.  An alternative definition of 
robust estimators is that they are those estimators that 
are resistant against all kinds of outlier and leverage 
points.   
When the LMS estimator was initially appealing due 
to its robustness and effectiveness in detecting 
outliers.  Unfortunately, LMS suffers from poor 
performance in terms of asymptotic efficiency.  In 
fact the LMS has an asymptotic efficiency of zero 
[2], which means that the LMS has an apparently 
slow convergence rate.  Furthermore, a situation 
where sever problems can potentially occur for LMS 
is when collinearity exists in the measurements.  As 
stefanski has argued that high-breakdown estimators, 
e.g. LMS, can exhibit unusual finite-sample behavior 
[3].  Stefanski has shown, via a simple example, that 
an LMS estimator may produce dubious estimates 
where collinearity does exist among a certain set of 
measurements.  This simple example was slightly 
modified by Ryan, in [4],  to further illustrate the 
weakness of the LMS estimator.  The outcome of 
LMS and LS estimators on the Stefanski example is 
illustrated in Fig. 1.  It appears from Fig.1 that the 
outliers have successfully misled the LMS fit and 
attracted its line.  This phenomenon is mainly caused 
by collinearity in the measurements.  In this example 
m = 9 and n = 1, therefore the 5 lower valued squared 
residuals will be minimized by LMS.  Interestingly, 
five points of the data set fall on the same line, three 
good points and two outliers, which consequently 
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appears to be the best candidate solution that the can 
be provided by the LMS estimator. 

 
Figure1. Illustration of LMS shortcoming 

 
Thus, for this example, the LMS solution was very 
far from the correct solution.    In comparison, the 
outliers seem to have less effect on the LS estimate 
(which a non robust estimator).  Subjectively, the LS 
fit appears to be better and closer to a correct solution 
(a correct solution should have approximately a zero 
slope), even though it is none-robust and is known to 
have 0% breakdown point [5]).  Certainly, had the 
seven good data only been used in the LMS 
regression procedure, the slope would have been 
virtually zero.  However, the collinearity of three 
good data points with two outliers has misled the 
LMS estimator.  Despite that, LMS and the LTS is 
still one of the most common robust regression 
estimators that is frequently used. 
 
2   Problem Formulation 
 
2.1 Uncertainty and state estimation 
Uncertainty in power system state estimation is 
mainly due to measurement inaccuracy and network 
mathematical model used.  For instance meters 
inaccuracies, communication error are major sources 
of measurements uncertainty.  Parameters 
approximations in modeling of the Pi-equivalent, 
such as line resistance, reactance, hunt capacitance 
etc, also contribute to the uncertainty in state 
estimation.  Unfortunately, magnitudes of such errors 
and approximations are not known, which in turn 
lead to uncertainty in the estimates obtained in state 
estimation.  Schweppe [6] introduced the concepts of 
uncertainty in the general context of engineering 
analysis, estimation and optimization.  These 
concepts have been extended and developed recently 
and have been applied in a number of areas.    
Uncertainty estimation has been considered in the 
context of water distribution networks.  Bargiela and 

Hainsworth [7] introduced bounds on the 
measurements, with an intention to increase the 
robustness of estimation.  The approach was 
developed by Brdys and Chen [7], who introduced 
the term Set Bounded State Estimation (SBSE).  
Nagar and Powell [8] apply concepts from robust 
control theory and allowed for uncertainty in both the 
parameters and the measurements.  The uncertainty is 
isolated with the use of a Linear Fractional 
Transformation (LFT), and the problem is formulated 
as a convex semi-definite programming (SDP) 
problem.  A Linear Matrix Inequalities (LMI) 
approach is then used to solve the SDP.  Al-Othman 
and Irving presented in [9] a method for estimating 
the uncertainty interval around the system state 
variables in power system.  The method is based on 
using WLS and linear programming to find the upper 
and lower bounds on the estimated states.  The 
uncertainty however is modeled only in the 
measurements.  One limitation with this method is 
that it relies upon a static estimator, i.e. WLS, which 
performs well in the presence of unbiased normally 
distributed errors in the measurements.  Therefore, 
the (LP) solution might be compromised, if the 
measurements were contaminated with outliers or 
unexpected error distributions are encountered. 
 
2.2  The Maximum Constraints Satisfaction     
Estimator  
 
The concept of uncertainties in the measurements 
may be considered to develop a more robust 
estimator.  In this section a new robust state estimator 
is proposed based on measurements uncertainty.  The 
uncertainty is modeled via deterministic upper and 
lower bounds on measurement errors, which take into 
account known meter accuracies.  Inequality 
constraints are constructed of the given 
measurements to model the uncertainty in the 
measurements.  A solution point satisfying most 
inequality constraints is the objective of the proposed 
estimator. 
In power system state estimation, inequality 
constraints are usually needed in optimization to deal 
with uncertainties.  In [10], an inequality constraints 
is employed, in a LVA estimator, only for handling 
uncertainty in pseudomeasurements since they are 
not measured but they are known to vary within 
bounded interval.  An inequality constraints LAV 
estimator based on penalty functions was formulated, 
in [11], to estimate states of external systems.  A 
parameter-bounding model derived from the 
bounded noise measurements was used in [12] with a 
reformulated constrained WLS, to handle 
unmeasured loads in the system.  The proposed MCS 
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estimator is based on the idea of searching for a point 
x  in the space of all possible estimates that 
maximizes the number of satisfied uncertain 
measurements.  To be specific, each measurement 
with its associated uncertainty can be represented by 
double inequality constraints (upper and lower 
limits).  These constraint limits define the tolerances 
on the measurements (i.e. the range of values within 
which the true value of the measured quantity must 
lie).  A point x  satisfying most of the available 
double inequality constraint, if not all, must be a valid 
solution point.  The fundamental concept of the MCS 
estimator may be explained better by the illustration 
in Fig. 2.  This illustration shows three uncertain 
measurements along with their bounds (upper and 
lower limits).  The intersection of these bounds 
defines an area known as the “feasible region” of the 
uncertain measurements.  An arbitrary point in the 
feasible region may certainly be considered as a 
potential solution that satisfies all those uncertain 
measurements (i.e. double inequality constraints).  It 
must be noted that any given solution point in the 
feasible region is not necessarily optimum but is a 
valid feasible solution.  Suppose that outliers exist in 
the measurement set.  These outliers with their 
bounds might, or might not, create a region of their 
own.  If by coincidence the uncertain bounds of the 
erroneous measurements mange to establish a region 
of their own, a solution point in that region can never 
have a maximum number of satisfied constraints that 
exceeds that of the region established by the good 
measurements, (given that the level of contamination 
in a given set of measurements can never be more 
than 50%, for the worst case scenario).  Therefore, 
the MCS estimator guarantees a robust solution, 
which is not influenced by outliers or erroneous 
measurements.  That is because the MCS estimator 
always seeks a solution point in the feasible region 
with the largest number of satisfied measurements, 
(which ought to be created only by the good 
measurements in the set).  Consequently, existence of 
outliers or erroneous measurements can never affect 
the quality of the MCS solution. 
Mathematically, for a vector of measurements z , the 
uncertain measurements may be represented by the 
following double inequality constraints: 

1 1( )

( )

l u

l u
m m

z h x z

z h x z

≤ ≤

≤ ≤

M M M                                (1) 

where ( )h x  is set of mathematical equation that relates 

the states x  to the measurements z .  Also lz  is the 

lower bound of the measurement vector and uz is upper 
bound, and they are formed as: 

lz z τ −= −                                 (2) 
lz z τ += −                                 (3) 

where τ +  and τ −  are the transducer tolerances.  The 
tolerance describes the deterministic uncertainty of 
each measurement.  It represents the overall accuracy 
of the meter and can usually be provided by the 
manufacturer.  Different values for the elements of 
positive and negative tolerances are permissible so 
that a transducer can be specified to have asymmetric 
accuracy if required (e.g. an accuracy of -3% to +5% 
of the nominal value).  Nevertheless, without loss of 
generality, we will usually assume that τ τ τ+ −= = , 
giving a symmetric tolerance around the nominal 
value. 
 

 
Figure2. The Maximum Constraints Satisfaction 

The proposed estimator aims at searching for a 
particular state variable vector that maximizes the 
number of satisfied uncertain measurements (double 
inequality constraints) described in equation (1).  
Formally the objective function of the proposed 
estimator is to maximize the number of satisfied 
constraints for a given potential solution x .   

x
Max Ω                                      (4) 

where Ω  denotes the number of double inequality 
constraints of equ. (1) satisfied by x .  
Geometrically, the shape of the objective function 
may be analogous to a campus map, where the 
objective is to search for the top of the tallest 
building.  The value Ω  is analogous to the number 
of floors in each building, and x  represents the 
ground co-ordinates of a point on the campus.  The 
tallest top is the feasible region established by the 
good measurements.  For that reason, a Real-Coded 
Genetic Algorithm is chosen to solve the 
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optimization problem of equation 4, which starts by 
generating a random population of potential solutions 
in the real space, of which each potential solution is 
evaluated and checked for how many double 
inequality constraints are satisfied.  The potential 
solution with highest number of satisfied constraints, 

iΩ , is picked up by RGA for the next generation, 
and so on.  Additionally, Genetic Algorithm was 
chosen because of its capability to search the whole 
space to find that region with the most satisfied 
constraints.  In the following section the proposed 
method has been tested on simple regression test 
cases. 
 
3   Problem Solution 
 
3.1  Simple linear regression example  
For a simple regression test case, with m 
measurements, the MCS general formulation may be 
given as: 

1 2,

1 11 1 2 1

1 1 2

2

l u

l u
m m m

Max

z x z
where m

z x z

θ θ

θ θ

θ θ

Ω

≤ + ≤

≤ + ≤

M M M M f

             (5) 

Where 1θ  and 2θ  are the regression coefficients to 
be estimated.  We can now apply the MCS estimator 
on an example which had two outliers in the 
x-direction from section.  It was demonstrated in [2], 
that the LMS estimator has successfully detected 
these two outliers.  With a symmetric tolerance of, 

= 3%τ ± , applied on all seven measurements of that 
example, the MCS formulation would be 

1 2,

1 1 1 2 1

7 7 1 2 7

l u

l u

Max

z x z

z x z

θ θ

θ θ

θ θ

Ω

≤ + ≤

≤ + ≤

M M M M
                            (6) 

The MCS has effectively solved for the correct 

regression coefficients, MCS

0.5ˆ
0

θ ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, fitting all five 

good points, perfectly unaffected by the outliers in 
the x-direction.  The least squares fit is shown for 
comparison in figure 3.  The bottom subfigure in fig. 
3, illustrates the number of satisfied constraints, Ω , 
progressively increasing throughout the evolution 
process of GA.  It is interesting to see that the 
maximum number of constraints that could possibly 
be satisfied is five, in this case, which is the number 
of good measurements. 

 
Figure3. Application of MCS with outliers in the 

x-direction 
 
As expected, when the MCS estimator has been 
applied to a simple regression case which had two 
outliers in the y-direction, both leverage points, the 

regression parameters were MCS

0.5ˆ
0

θ ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

.  The 

outcome of the MCS is compared with least squares, 
and an illustration of that outcome is shown in Fig 4.  
Clearly, these two leverage points had no effect on 
the MCS estimator.  (For these tests, the population 
size =100, crossover = 0.8, mutation = 0.09 and 
elitism rate = 8%.) 
For further assessment of the robustness and 
performance of the MCS estimator has been tested in 
situations where collinearity exists, the MCS 
estimator has also been tested on the data set 
provided by Stefanski [3].  (With 
tolerance 3%τ = ± , population size =100, crossover 
= 0.8, mutation = 0.09 and elitism rate = 8%).  Fig. 5 
illustrates the outcome of the MCS estimator on 
Stefanski’s example.  Apparently, the solution from 
that run has produced a zero slope approximately, to 

be specific MCS

-0.0017ˆ
3.4088

θ ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

.   

 
Figure4. Application of MCS with outliers in the 

y-direction 
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As far as the maximum number of satisfied 
measurements is concerned, it is apparent form the 
plot that only four double inequality constraints had 
been satisfied in the specific run; giving four data 
points adjacent to the MCS curve in the figure.  This 
suggests that the number of satisfied constraints 
cannot always be used as an indication of number of 
outliers in the measurements.  Had the tolerance been 
wider, (e.g. 5%τ = ± ), more measurements would 
have been satisfied.  In this example, outliers could 
be visually identified, however for higher dimension 
problems, residual analysis may be carried out for 
proper detection of the number of outliers. 

Figure 5. Application of MCS on Stefanski’s example 
3.2  D.C. Three bus test system 
 
For further assessment and testing of the MCS 
estimator on a more realistic example, the D.C. 
model of a three-bus system is considered.  An 
on-line diagram of the test system is displayed in Fig. 
6.  The system was originally proposed by Monticelli 
and et. al, in [13], in their study of the identification 
of multiple bad data for state estimation.  Milli et. al, 
in [14], have applied the LMS estimator on the same 
system.  Physically, the resistance of all lines of the 
three-bus network are taken to be zero.  All line 
reactances are however to 0.1 p.u.  Suppose that the 
six real power measurements are taken with zero 
variances, the measurements Jacobian is given as: 

10 10 10 0 10 10
10 10 0 10 5 10

T

H
− − −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
               (7) 

Having assumed bus1 as the slack, (reference bus), 
the true states 2θ and 3θ  are zero.  Hence, the true 
flows and injections are all zero, i.e. Z =[ 0 0 0 0 0 0]. 
In order to test the MCS estimator, various scenarios 
of bad data occurring in the measurement set will be 
considered.  For the sack of checking the validity of 
the proposed method, these scenarios are exactly the 
same as those considered in [13]. 
 

 
Figure 6. Three-bus test system 

Case A:  Suppose that a single bad data had been 
acquired for the fifth measurement, the real power 
injection at bus 2, for example  Z =[ 0 0 0 0 1 0].  The 

MCS estimator yields 2θ = 0.0010 and 3θ = 0.0008.  
From that solution the residual is calculated as [  
-0.0027,  0.0027,  -0.0102,  -0.0075,  1.0065,  
0.0177], and the corresponding standard deviation 
for the residuals is 0.4110.  It is apparent that the fifth 
residual is the only one which is larger than the 
standard deviation, suggesting that the fifth 
measurement must be a bad data point. 

 
Figure 7. MCS performance with single bad data 

Figure 7, displays the convergence of the MCS 
estimator.  It shows that only five double inequality 
constraints can possibly be satisfied in this case, 
signifying that one measurement in the set must be 
erroneous. 
Case B:  Assume that readings for the same network 
are Z =[0 -1 0 0 1 0].  Generally, measurements 2 and 
5 are considered interacting, since they are both 
related to the line flows of bus2.  These measurement 
values are however nonconforming.  The MCS 
estimator yields 2θ = -0.0039 and 3θ = 0.0132, 
leading to residual vector  [  -0.0274,  -0.9726,  
-0.0129,  0.0145,  1.021,  -0.0016] and a standard 
deviation 0.6305.  From this result, it can be deduced 
that measurement 2 and 5 are erroneous.  This type of 
error distribution is usually known as multiple 
interacting nonconforming bad data. 
The maximum number of constraints that may be 
satisfied is four, as indicated by fig.8.  That indication 
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appears to be correct, since it is known that two out of 
the six readings are bad. 

 
Figure 8. MCS performance with multiple interacting 

bad data 
4   Conclusion 
In this paper a robust estimator based on the 
satisfaction of uncertain measurements, has been 
presented.  The robustness of the MCS has been 
successfully demonstrated through different simple 
regression examples and a three-bus D.C..  Various 
scenarios of leverage measurements and bad data 
have been considered for further assessment of the 
performance of the MCS estimator.  Specifically the 
MCS estimator has been very effective as apposed to 
LMS, in situations where collinearity exists amongst 
measurements, in the case of linear regression.  The 
distinct robustness of the MCS may be due to the 
uncertainty tolerance on the measurements, such that 
no exact fit of measurements is required by the 
proposed method.  For accurate estimation, the use of 
the MCS estimator is recommended for identification 
and elimination of the outliers, prior the use of any 
non-robust estimator. 
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