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Abstract: - A speed control system for an 8/6 switched reluctance motor was developed using a Neuro-fuzzy 
controller with on-line learning capability. The results, for the most common functioning regimen, are 
acceptable, as it is demonstrated in this work. However, in some particular cases, in the reference function 
tracking, it was observed a significant increase of the error value. These particular cases appear when fast 
time variations of the reference signal are imposed, implying a change of the machine speed. 
In this paper two concrete problematic situations are presented and these ones are analyzed considering two 
distinct compensating methods solutions, one for each case. Also the experimental results of the proposed 
solutions are presented. 
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1   Introduction 
The switched reluctance machine (SRM) is, more and 
more, used in electromechanical systems replacing 
successfully other electrical machines. With its 
characteristics; like the efficiency curve more flat 
than the asynchronous machine one, or being able to 
run at very high speed (> 3000 rpm), it becomes the 
choice for designers of performance productive 
systems. Applications of the SRM in industry, such 
as cleanness industry, textile industry and automobile 
industry among others, appear due to robustness and 
low cost of maintenance [1]. The command needs, 
however, the information of the rotor position, which 
can be given through an incremental encoder.  
The SRM design produces considerable speed ripple, 
mainly at low speeds, and high acoustic noise [2]. Its 
nonlinear behaviour is mainly related with the 
inductance of the magnetic circuit that is a function of 
phase current and rotor position [3]. The SRM thus 
presents a nonlinear multivariable control structure 
that calls for complex nonlinear design to achieve a 
high dynamic performance. 
The above-mentioned drawbacks are difficult to solve 
with conventional control techniques due to the 
complexity of modelling the SRM dynamics. 

Therefore, fuzzy controllers are today an attractive 
control solution to be used with these machines. 
 
 
2   System Controller 
One reason for the choice of such a controller is its 
learning capability and the possibility of generating a 
control law based on rule adaptation [4] and [5], 
minimizing the error goal function. This paper 
presents and discuss the results obtained with the 
development and implementation of a 
microcomputer-based neuro-fuzzy learning speed 
controller for an 8/6 SRM, driven by a power 
converter. 
Some characteristics were imposed to the motor and 
connected mechanic machine, such as the direction of 
rotation and passive braking through the load. This 
one is very similar to the real systems composites for 
an electric motor and an analogical dosage pump.  
 
2.1   Neuro-Fuzzy Design 
The neuro-fuzzy system can be interpreted as a neural 
network composed with five layers and it is presented 
in figure 1. In the presented model the connections 
between nodes do not correspond to an attributed 
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weight to the connection but to the propagation of the 
previous node result.  
The input variables xi of the neuro-fuzzy controller 
are the speed error and its variation (ek,∆ek) defined 
by (1) and (2). 
 
ek = wref – w          (1)                                                              

 

�ek = ek-1 - ek     (2)
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Fig.1 Diagram of the proposed fuzzy 
neural network for speed controller 

 
Each node has an activation function, representative 
of the fuzzy system for each layer of neurons. Next, 
the functions of the nodes in each of the five layers of 
this connectionist model are described. 
In the first layer, the activation functions are for 
adjustment of the variables values to the universe of 
discourse, through a linear function with saturation in 
the upper/lower limits, as expressed by (3).  
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O1ij represents the result of the node; the universe of 
discourse is represented by U where UiMAX and UiMIN 
are its limits; xi is the input value where GiMAX and 
GiMIN are its limits and index i is the variable number. 
In this case the variables will be the speed error and 
the variation of the error. 
In the second layer the fuzzification is performed. 
The output function of each single node is a simple 
membership function of the fuzzy system. The 
membership function used is Gaussian and it is 
expressed by (4). 
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(4) 

 
Where ci,j and ui,j are respectively, the gaussian 
function centre (or mean) and width (or variance) of 
the jth term of the ith input linguistic variable xi . 
In the third layer the inference mechanism is 
activated. It is used the Tnorm. The used operator is 
the algebraic product (5).  

 

jiji OOO ,2,2),(3 =  ; i and j ∈ Ν+ (5) 
 

 
Where i and j are the nodes of the second layer 
associated with the input variable.  
The fourth layer performs the consequent part of the 
rules through the expression (6). The value of the rule 
weight �k(i, j) is produced by the fifth layer in function 
of the learning algorithm. 

 

),(),(3),(4 jiKjiji OO ρ=  ;  i and j ∈ Ν+     (6) 

 
The fifth layer has two kinds of nodes. The first one 
performs the decision signal output. These nodes act 
as defuzzifier and are expressed in (7).  
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The second kind of nodes performs the learning in 
order to minimize the error function (9) represented 
as input for correction in the diagram of the proposed 
fuzzy neural network by modifying the value of the 
nodes of the fourth layer through the weighted rules 
consequents (8). 
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The learning rate γ assumes a value ∈ [0,1] and E is a 
cost function to be minimized. E is a quadratic error 
function (9) where wref is the value of the speed 
reference and wk the value of the machine speed. 

 

[ ]2

2
1

kref wwE −=  ; k ∈ Ν+    (9) 

 
2.2   Error Analysis  
The MPE and the MAPE error analysis were used in 
this study. It consists in the calculation of the error 
percentage average (MPE - mean percentage error) 
and the average of the absolute values of the error 
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percentage (MAPE- mean absolute percentage error) 
expressed in (10) and (11), respectively.  
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PE is the percentage of the speed error, given by (12). 
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The performance in the speed tracking will be better 
for lower values of these two error measures. 
 
 
3  Behaviour of the System and 
Problem Definition 
The laboratorial tests were set up by tracking a 
trapezoidal speed reference function between 300 and 
1200 rpm, 500 and 1400 rpm and finally between 400 
and 800 rpm, as presented in figures 2 and 3. The 
slopes of the first and second group of speed cycles 
have the angular acceleration of 1,618 rad/s2 and in 
the last cycle is 0,719 rad/s2. 

Fig.2: Speed tracking with a trapezoidal reference 

function 

The error is presented in table 1 for a set of cycles of 
speed levels. It is evident that the performance 
presented in the interval between 400 and 800 rpm is 
the best. This is due to the fact that the acceleration 
being lower implies a better adaptation of the neuro-
fuzzy system to the speed reference signal tracking.  
 

Table 1 - Error performance analysis by speed cycles 

Cycles 
300 / 1200 

(rpm) 
500 / 1400 

(rpm) 
400 / 800 

(rpm) 

MAPE (%) 2,94 2,26 2,25 

MPE  (%) 0,005 0,129 0,145 

  Fig.3: Speed tracking with a trapezoidal reference 
function for various speed 

But in the cases where there is the necessity of 
changing the reference speed brusquely, the system 
presents an oscillatory behaviour while the neuro-
fuzzy controller readjusts the rules consequents 
weights. In figure 4 it is presented the behaviour of 
the machine speed with evident degradation of the set 
performance. This is one problem that appears in 
these control systems due to the necessary learning 
time for acquire knowledge about the new 
functioning regimen. This necessary time will be 
more or less long in function of the algorithm 
execution, the learning rate, the neuro-fuzzy system 
net dimension and the type of computer used.  
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         Fig.4: Speed tracking with a rectangular reference 

function 

 
3.1   Slopes Reference Tracking 
The tracking of the triangular speed reference 
function is presented in figure 5. The speed tracking 
error is 0,19% for MPE and 3,0% for MAPE. One 
evidences that it is slightly higher than the one 
presented with a trapezoidal function in Table 1.  
The tracking of sinusoidal speed reference function is 
presented in figure 6. The error with MPE is 0,32% 
and with the MAPE is 5,13%, assuming higher values 
related to the previous ones, due to the increase of the 
slope. The acceleration for the triangular and 
trapezoidal functions is 9,40 rad/s2 and for the 
sinusoidal function is 20,06 rad/s2 which represents 
an increase of 213%. 
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     Fig. 5. Speed tracking with triangular reference 
function  

   Fig. 6. Speed tracking with sinusoidal reference 
function 

 
The degradation of the control capability observed by 
the MAPE value increase is inevitable consonant the 
reference signal variation increases in order to the 
time. This degradation is a consequence in part of the 
increasing derivative absolute value of the reference 
signal.  
This is another problem that appears in these control 
systems due to the necessary learning time for 
acquire knowledge about the new functioning 
regimen. This necessary time will be more or less 
long in function of the algorithm execution, the 
learning rate, the neuro-fuzzy system net dimension 
and the type of computer used. 
 
 
4   Proposed Solutions  
In principle, it is considered that it is not possible to 
change the computer for another one with better 
processor unit performance. It is also considered that 
the net dimension of the neuro-fuzzy system is not 
changed because it will affect the good functioning of 
the set.  

 
4.1   Rectangular Reference Tracking 
The proposed solution for the rectangular reference 
tracking problem in this work, will not modify the 
algorithm cycle time, nor the dimension of the neuro-

fuzzy net.  The learning rate will remain constant, 
which is very common in these systems. Respecting 
the imposed conditions, a solution passes acting on 
the weights matrix of the rules consequent part level 
generated by the learning algorithm. Although a two 
dimensional matrix already exists for the effect in (8) 
called ρk(i,j), this will not be able to store 
simultaneously different information of the weight of 
each rule related to each regimen of the set 
functioning. Consequently, the proposed solution 
consists on using one rules consequent weights 
matrix for each functioning regimen. This means that 
the system must have a three-dimensional matrix or a 
multilayer weights matrix. Theses weights matrix, 
after the learning process, has all the necessary 
information for each functioning regimen and they 
are selected depending on the decision block. In this 
work, this decision block is based on the speed 
reference value. For example it was generated one 
empty matrix for the learning process when is 
detected a new speed reference value step (old 
reference value is 300 and the new one is 500 rpm). 
In this moment the weight matrix stay linked to this 
speed reference value (500 rpm) and always used or 
call when this last one is desired.   
Thus, in the learning expression (13), the rules 
consequent weights matrices, m, are used in function 
of the speed reference value (in this in case m = {1, 
2}). 
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4.2   Slopes Reference Tracking 
In many cases the previous solution is efficient. 
However there are situations like concavities, 
declivities very accented or very random variations of 
the reference signal to tracking. For these cases the 
system has difficulty in following exactly that 
reference signal or need a new structure composed 
for a lot of new layers of rules consequent weights.  
The proposed solution for this particularity is to joint 
an algorithm to change the learning rate when 
necessary. In this work it was understood to be 
necessary to modify the learning rate value when the 
module of the error percentage value was equal or 
greater than the objective value. In this case it was 
2%. Thus, using this rule, the learning rate value was 
changed becoming it more dynamic through the 
application of the expression (14). 
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Where γk is the learning rate value used for updating 
the weights of the consequent rules expressed in (8), 
γd is the default learning rate value gotten and 
demonstrated in [6], PE is the error percentage gotten 
through the expression (12) and λ is the impulse 
factor of the logarithm function. The impulse factor 
value ∈{0,1} and it was chosen when the learning 
rate value result, for a maximum PE value 
considered, is such that the system is between the 
cushioned and the oscillatory reply. This set of 
conditions support the learning rate adaptation 
algorithm and was applied to the on-line learning 
controller in the tracking of reference speed function.  
 
 
5   Experimental Results 
For the first compensating method, the principle was 
applied to the on-line learning controller in the 
tracking of a rectangular reference speed function 
with 300 and 1200 rpm. That implies the use of two 
rules consequent weights matrices. The first one will 
be applied in the learning and it is always used when 
the speed reference is 300 rpm and the second one 
will be always applied when the speed reference is 
1200 rpm. In figure 7 one observes, in the first step, 
the typical oscillations due to the learning stage. 
Figure 7 presents the machine speed trajectory, 
without the oscillations, in next cycles.  
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 Fig.7: Speed tracking with a rectangular reference 

function 
 
It is evident that the controller with one weights 
matrix layer presents, in the first time that the control 
trajectory is described, bigger easiness in learning the 
new regimen of functioning due to the use of a base 
of existing knowledge, but needing some 
adjustments. While that, in the same situation, the 
controller with two weights matrix layers delays more 
to learn the new regimen (compare the first 
rectangular cycle in figure 4 and figure 7 at 1200 
rpm). This is verified due to the second matrix of the 
weights to be initialized at zero which means without 
knowledge. In the subsequent cycles the controller 

with one weights matrix layer continues to have to 
readjust and to learn the new regimen of functioning, 
either 300 or 1200 rpm, to the step that the same 
controlling with two layers of weights is faster in 
reply for already having acquired knowledge 
characterized by the stored value of the weights for 
the two regimes. In the case that it has load variations 
some small readjustments are needed to joint the 
already knowledge.  
For the second compensating method, first, without 
the adaptation learning rate algorithm, the controller 
was submitted to a set of tests. Theses tests were 
developed applying a speed trapezoidal reference 
function between 300 and 1200 rpm showed in figure 
2, with 10s, 8s, 6s, 4s and 2s of slopes duration each 
time. 
Next the same set of tests was applied to the 
controller with the adaptation learning rate algorithm 
(14). The gotten results were summarized in the 
representation of the MAPE in function of the slopes 
acceleration in figure 8. In dashed-dot line, it is 
observed the tests results of the MAPE with the 
controller without the adaptation learning rate 
algorithm and in solid line the course of the MAPE 
representative of the controller performance with the 
adaptation learning rate algorithm.  
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Fig. 8: MAPE factor of the experimental results of the    

neuro-fuzzy controller without (dashed-dot line) and with 
(solid line) adaptive learning rate algorithm. 
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       Fig. 9: Percentile improvement of the performance of 

the controller based on the MAPE. 
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The maximum improvement is placed in 22% for 
slopes with 18,8 rad/s2. However it is observed that 
this algorithm presents a real profit in the 
performance of the controller until accelerations of 43 
rad/s2 approximately as is observed in figure 9. 
Verifying, in this last point, that figure 9 supplies the 
information of when the adaptation algorithm 
considered will have to be inhibited to update the 
learning rate. Better results are possible when 
conjugating the two functioning ways; constant 
learning rate versus adaptive learning rate. Above 43 
rad/s2 the performance of the controller is negative 
because the increases of the increment values of the 
adaptation learning rate algorithm provoked the 
sprouting of oscillations in the reply of the controller, 
raising the MAPE value. In figure 8, the course of the 
MAPE results of the controller with the learning rate 
adaptation is linear. It can be interpreted that the 
slope of this linear function represents the difficulty 
to improve the performance of the system 
materialized for the set of pertaining parameters to 
the machine and controller in the presented 
conditions of the assay. 
 
 
6   Conclusions 
The implementation of a neuro-fuzzy system was 
described. All the five layers of the connectionist 
model were explained. The learning algorithm, in 
order to minimize the error function, acts modifying 
the values of the rules consequents weight and was 
presented. The parameters of the controller were 
defined and also explained. Some parameters were 
fixed while others vary until reach a satisfactory 
system behavior. 
Experimental results, showing the system 
performance, were presented along a set of various 
speed reference functions tracking. In this work, it 
was used two kinds of error measures analysis: the 
MPE and the MAPE. It was verified a good 
performance in the speed tracking of a trapezoidal 
reference function 
It was also presented a solution and its application for 
the on-line learning SRM speed controller when 
abrupt reference speed variations is needed and it is 
necessary to self readjust without compromising the 
set good performance. This system was applied 
having into account some conditioning that do not 
warrant in favour of the controller such as not to be 
able to break the machine speed, as it was tested in 
machine functioning regimes situations more adverse, 
without mechanic load.  
It was also presented one solution and its application 
for the same speed controller when the increase of the 
reference speed slopes is needed and it is necessary to 

self readjust without compromising the set good 
performance. It is shown that the controller, with an 
adaptive learning rate, presents a better behaviour in 
learning the new functioning regimen with increase 
slope rates. This is due to a more quickly learning of 
the regimen depending of the error percentage.  
The continuation of this work will consists on in 
automatically determining when these two 
compensation methods must be on individually or 
simultaneously contributing for a high behaviour 
performance. 
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