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Abstract: - In this article there is an attempt to investigate a counting process with variable number of Poisson 
working nodes producing output. Servers’ quantity here is a stochastic variable. Some formulae for the 
counting process are received and compared with well known results of corresponding evaluations using 
degenerate probability as server distribution. In calculation virtual time concept was used as time mapping 
(shrinking) from system with variable quantity nodes to single server one. 
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1   Introduction 
 
Modern distributed systems middleware offers 
resource hiring from others cites which may belong to 
other organizations. For example, this is a good 
practice in GRID environments [1]. One can build 
virtual organization using borrowed resources. Well 
known example in business life is outsourcing. 
Computational resources in such environments can be 
offered or revoked at arbitrary time what makes these 
systems mutable. At another point of view, system 
designer often is forced to apply dynamical hiring 
policy of some kind as a result of nonzero cost in 
general case of borrowed resources. These and other 
reasons are supporting appearance of systems with 
variable servers’ number. So in near future systems 
with variable servers’ quantity seems to be the 
common case. 
One can often see mass production using number of 
similar machines. These machines in real life can 
sometimes stop its work due to any reasons, but 
production is still going. Or master may decide start 
extra machines in a rush times. 
These and others similar situations derive models 
where a system produces items (goods, events e. t. c.) 
and this production is based on a group of identical 
producing nodes (servers). It can de modeled with a 
counting process. To represent effects of adding or 
removing servers author suggests to consider counting 
process made of a group of identically distributed 
servers varying in its quantity. We assume that these 
servers have Poisson distribution due to its simplicity. 
 
1.1 Related works 
 
The most close to the theme seems investigations of 
systems with variable parameters: compound (for 
example [2]) process, Cox processes (for example 

[3]), mixed processes, phase processes e. t. c. We’ll 
look at them here from time shrinking point of view. 
Analyze of systems with variable servers’ number are 
performed in many scientific fields. The Chord system 
(for example [4]) allows nodes join and leave system 
at random. Fault tolerant systems are widely 
discussed. But all these papers investigate its specific 
questions (content preservation in Chord, availability 
with fault tolerance e. t. c.) without looking at nodes 
number dependent queuing dynamic. 
Idea of state-dependent time in queuing is used, for 
example, in stability analyze [5]. But it differs from 
time–shrinking approach used in the paper. 
 
2   Problem Formulation 
 
In the paper the counting process is named as )(tA , 
and it is made of independent identical distributed 
Poisson service processes )(tX i , with mean µ . 
Servers’ quantity is provided with random variable U  
with mean τ , variance σ , probability distribution 
function F, and probability generation function Y. 
The problem is to obtain some characteristic for the 
counting process (probability distributions, queue 
mean and variance) and show that they are correspond 
to known ones in suitable conditions. We’ll compare 
achieved results with known properties of Poisson 
processes using degenerate probability distributions of 
their quantity U  and put some generalizations. 
 
Because of Poisson nature of the service process, we 
don’t pay any attention to entering and/or leaving 
service node’s behavior within entering/leaving 
intervals and at its boundaries. 
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3   Problem Solution 
 
3.1. Virtual time within a process 
 
Probability and time are close bound: 
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Here }{ iT  are the time slices while the system stays 
in one of disjoint system states indexed with i , and 

iu  is the probability of the state. E is a union of all 
possible states. 
Let U  is time independent. Let these slices are 
indexed with servers’ number within it ( i -th epoch 
has i  servers). So the process within time slices }{ iT  
can be seen as usual i-server Poisson process. We may 
combine several epochs with the same servers’ 
number into single one and interchange such epochs 
due to Poisson’s probability distribution memory less 
nature of nodes’ output. 
 
Proposition 1. The throughput of independent 
identical distributed Poisson i-servers process can be 
modeled with a single server Poisson process with a 
special timing, which is i  times longer then real 
(hereafter referred to as ‘virtual time’): 
 

i
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For example, formally one can get this effect with 
simple variable substitution like following in some 
distribution function H: 
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When 0=i , then no work is done and no increment 
of the counting process’ output is expected due to 
absence of anything capable to perform it. Hence such 
epoch need not to be modeled. So received zero 
modeling (virtual) tine seems to be valid. 
For virtual time like (1) and using (2) one can get: 
 

TUTEkuT

TukkTTT

k
k

k
k

k
k

k

v
k

v

τ===

====

∑

∑∑∑

+∞=

+∞=+∞=+∞=

)(

)(

,

,,,

0

111 . 

(3) 

 
So we found that virtual modeling single server 
system time is E(U) times larger than real one in 
variable servers’ number system. 

 
Now let )(tUU =  is time dependent. We have to 
fragment vT  and T  into related intervals 

),[ vvv dTTT + , and ),[ dTTT +  due to unlimited 
Poisson’s divisibility. Then one can use (3) for every 
fragment with stable )(tU  within it to calculate 
virtual time: dTTtdT v )()( τ= . The result is 
obtained aggregating all intervals using integration: 
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If one try to formally insert this virtual time as a 
process time into single server’s Poisson probability 
generation function, then (this method doesn’t 
consider any other probability characteristic of U  
except mean, because this way this information is 
lost): 
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As we‘ll see later, the mean is correct but the variance 
doesn’t account for servers’ variance (see (8)). 
 
3.2 Probability generation function for 
stationary servers’ number distribution 
 
Let F is servers’ number probability distribution 
function: }{)( xUPxF ≤= . As probability 
distribution function, F is monotonic, and 

],[),[: 100 a∞F . 
Let’s go from 0 to infinity along x with distribution 
function )(xF . In integer case we’ll get stepping 
function with steps corresponding to iu  in (1) at 
integer points i corresponding to i-servers state. For 
example, single step function at sx =  makes 
deterministic distribution corresponding to s-servers 
system. Looking at (3) we came to proposition 2. 
Proposition 2: Function ],[),[: 100 a∞F  maps 
virtual single server system time to unity interval of 
real system time. 
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Indeed: 
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There first equality follows from probability norm, 
and second one follows from definition F(x) in integer 
case.  
 
In equilibrium state for a single server Poisson process 
the probability to get i counts within all virtual time 
scale (which corresponds unity real time interval) we 
may find as: 
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Then probability generation function will be: 
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Here )(sη  is Laplas-Stiltjes transform of F(t).  
For real time interval t we use tξ  instead of ξ  above 
and get: 
 

))((),( tztzG −= 1µη . (4b)
 
So the mean and variance of output production are: 
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Here 2σ  is the servers’ distribution variance. 
 
Let’s build generation function another way. Because 
of theorem of total probability: 
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If there are only k servers in the system then: 
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Corresponding to k-servers system 
}|)({ kUitAP ==  probability generation function 

),( tzGk  and its coefficients )(, tg jk  are calculated 
as: 
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Later equality follows from the fact that generation 
function of k-convolution is k-power of convoluted 
function ),( tzh  — generation function for )(tX i , 

tzetzh )(),( −−= 1µ . 
Finally these formulae make a compound distribution: 
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(6) 

 
Here Y(z) is a generating function corresponding to 
U. )(),( )( tzeYtzG −−= 1µ . It corresponds (4b) using 
relation between Poisson probability generation 
function and Laplas-Stiltjes transform for stochastic 
intervals. 
 
3.3 Varying in time servers’ distribution 
 
Let’s now )(tuU =  is a function of time.  
 
Performance of a Poisson counting process is 
proportional to its runtime. Therefore we have to 
calculate its relative length: 
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T
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It may be considered as constant distribution (for 
given T) and one can insert it into (6): 
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(here Tzex )1( −−= µ ), one can get: 
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One can see that the mean and variance are like (5): 
 
4   Conclusion 
 
4.1 Comparison with existing results 
 
Fixed server counting process be achieved from 
variable servers’ model using degenerate probability 
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For distribution in (9) formula (2) gives: 
 

stt v = .  
 
The mean and variance coincide with known values 
for Poisson process are: 
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Generation function for a counting process is the same 
as for s-server Poisson servicing process. 
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These results correspond to well known for s-server 
Poisson processes. 
 
4.2 Discussion 
 
In this paper server number was controlled with a 
stochastic variable/process. One can use functional 
control instead and investigate system’s behavior in 
control, decision or another theory’s framework. 
If working nodes are not Poisson then boundary 
behavior effects appear: we cannot group different 
epochs with the same servers’ quantity together and 
swap epochs to order them in increasing servers’ 
number. 
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