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Abstract: - Function approximation by convolution type sigular integrals has important applications in differential and
integral equations. Thus, we develop the test conditions for the convergence of convolution type singular integral
operators to approximated function in the exponential weighted space. An application for the Gauss-Weierstrass

integral is given.
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1 Introduction
Let g>0be a fixed number and 1< p <. We consider

the exponential weighted space Lp,q(D) of all real-

valued functions f defined by

Loa(0) =11 : “f”p,qw}

where

1

el

In L, q(D) space we consider the positive singular

integral operators A, ( f ) defined by
A (D)) =[f(x+)K, (dt (1)

0
where [K, (t)dt=1. We sometimes use the notation
0

A( f; X, a) to denote this operator.
An estimate to f (x)— A, (f)(x) in different norms for

the positive Lingular integral | operators has been
established by wvarious scientists (see [3, 4, 5] and
references therein). Another approach to obtain such an
estimate is by the method of test functions. In this study
we derive theory of approximation of function f in

L, , space by positive singular operators and investigate

the order of approximation using the method of test
functions with the aid of the weighted modulus of
continuity of f and its derivatives.

The remaining part of this paper is organised as follows.
In Section 2 the weighted modulus of continuity is
defined and then the rate of convergence for A is

calculated in the weighted space. In Section 3 the global
smoothness preservation property is discussed after that
an application for the Gauss-Weierstrass integral is
given.

2 Approximation of Functions in L
Space

We define the test set analogous to the test set defined in
[3, page 70]. Our test set consists of the functions 1,
t+X,

E t+X, tzeg
o O R B
modulus of continuity of function feL, ,(0) denoted
by @, ,(f; &) and defined as
a)p’q(f; 5)=sup f(x+t)-f (x)
t<6
In [5] it has been shown that
w, (f:28)<(A+1)e" w0, (:6) (2)
where A is a positive real constant.
Now, we let A, ( f ) be any positive linear operator that

p.q

te where X, €] . We recall the weighted

”p,q'

satisfies the conditions

9t-x,

A(te“ ,xo,a)zcaonrﬁ(xO,a) (3)

A(tze?’l_x‘), Xy 5 a) =C_ X, + }/(XO, a) 4)

together with Ei%ﬂ(xo’ a) =0, Eilgj/(xo, a) =0 and
C,=[K, (t)eat‘dt <o . Then we come up with the
0

following theorems.
Theorem 1. Let f be a function in L (J) space.

Then, for any positive singular integral operator A, ( f )
with the properties (3) and (4), the equality

A(f; x a)—f(x

H (f;x @)= f( )‘p,q

O -2t )

holdsas a —0".
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Theorem 2. Let f be a absolutely continuous function
whose first derivative belongs to L, ,(C ). Then, for any
positive and even singular integral operator Aa( f ) with
the properties(3) and (4), the equality

|A(f: % @)= 1 ()]

=0 (@, (5 7 (%0, @)= 2%, (3, @) )
holdsas a —0".
Proofs to the these theorems will be given after the
following two lemmas.
Lemmal.If fel  (0) thenwe have
|A(fix )| <c |t -

p.q

The formula (5) shows that A (f) is a positive linear

operator from L_  space into itself.

p.q

Recall that in the usual L, space the modulus of

continuity a)p(f; ) ) tends to zero as o approaches

zero. Similar property holds in the weighted space [1].
The following lemma states that the weighted modulus
of continuity also has the similar property.

Lemma2.1f L, , (U ) then lime, ,(f;5)=0.

Proof. Since fel, (), then for each &£>0 there

exists ael] such that

L Vp
P a-alX £
:|;|f (x)"e dxj <3

and

» 1/p
P _—qlx fi
£|f(x)| e dxj <3

On the other hand, given 6 >0, we can write

1

[_jj:| ()" e‘”dlep +[ [1F)° e‘”dep <

a+o

q
P

4e
Thus, by taking |t| <J, we obtain
—a-o % ®© lp
P -l P -l ¢
[_[C|f(x+t)| e dxj +L_L|f(x+t)| e dx] <7

By using the definition of e, ,(f;5) and above

inequalities, we get

1

as | f (x+t) | '
o, ,(f:6)<sup I (x+1) e ax
’ <o | 25| — F(X) (6)
&
+_

It is known that by Weierstrass theorem there exists a

sequence of functions ¢, (x) with continuous

derivatives in the interval [—a -20,a+20 ] such that

a+2o b ¥ %

: _ —alx —

%1_{90( _[ |f(x) ¢)n(X)| e de =0,
-a-29

in other words, given &>0 there exists n, €[] such

that

( aT(s | f(x)-o, (x)|p e"”dxjp < iﬂé
_a-2s 8e’

whenever n>n, and 6 >0. Thus, we have

1

sup( T | (x+1)—g, (x+1) e‘”dep

|t)<o _as

ola

5( j |f(x)—gon(x)|pe‘]‘xdep 7)

<e
-a-29
(£
8
for n>n,.

On the other hand, by adding and subtracting
@, (X + t) + 0, (X) and then applying the Minkowsky
inequality we obtain

1

[aji“ (x+t)— £ () dep

< n f(x+t)—g, (x+1)" e dx '
—-a-o

1

[ oo, 0 e

-a-o0

1

Tl rereve

-a-o0
From(7) it follows that

1

sup( T | f(x+t)—f (x)|p e_qdeT
a-o

<o \ _5_

, (8

a+o P
S%Jrsup[ I ¢n(x+t)—(pn(x)|pe'qxdxj .
o

tl<s

By the properties of ¢, (X), we can write for |t <& and
n>n,
&

(pn(x+t)—(pn(x)|sm,

where the constant C = [%(1 —g )Tp . Thus, we obtain
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1

sup( a].é‘ gon(x+t)—gon(x)| qdeJ <— (9)

t<s

—-a-o
By (8) and (9) we get
a+o
sup( [ f(x+t)=1(x )|"e"”dxj<f.(10)
<o \ 2 s 2
By the inequalities (6) and (10) we have

w, ,(f;6)<e forall £>0. This proves the lemma.
We are now ready to prove the theorems above.

Proof of Theorem 1. Since [K,(t)dt=1, using
0

generalized Minkowsky inequality we get from (2) that

p 0
e Max

|ACT; %, @)= 1 (x|

!

P, q

[K, (x+1)— f(x))dt

t

)K, (t)dt

a

Sj‘wp,q(f;
0

A )Lj K, (t)e”"dt + /1!|t| K, (t)e" dt}.

We apply the Holder inequality to obtain
HA(f; X, a)— f (X)

.

A ){ Lj K, (t)e""dt

" /1( Dj 'K, (t)ez‘dtT [ [j K, (t)e" dt}i}

<M, (f; 4 ){Hﬂ[!tzKa(t)e?‘tdtjé}

where Mazmax{Ca,\/q } From (3) and (4) it
follows that

(K, (e dt=y(x,. @) - 2%, 8(x,. a).

0

If we choose A~ =\/7/(X0, a)—=2%B(%, ) then we

get
HA(f; X, a)— f (x)”

completes the proof.

Proof of Theorem 2. Since f is absolutely continuous
function then by mean value theorem, there exists &
between X and A,(f) such that

f(x+t)—f(x)=tf"(¢)

=tf'(x)+t
Then, we have
A(1)(0)- 1 (x)=

X) [tK, (t)dt+[t( (&)= f'(x))K, (t)dt.

(f(£)-1'(x).

Since the kernel K, (t) is even,

[tK, (t)dt=0.

Therefore, in view of generalized Minkowsky inequality
we have

[ACfsx a)= £ ()] <[(&)- ()] K, (t)et

On the other hand, by |§ - X| < |t| and (2)

|A(f5 % a)-(x)
Sﬁ[a)p,q(f’;

Sjwp,q(f
0

<o, (15 27)[(1+ A1) e K, (t)dt

0

0, o(1:27)) [Itle”'K, (t)dt+ 2 [t 'K, (t)dtj
0 0

”p,q

E-X)[t|K, (t)dt

t)[t|K, (t)dt

Jc. [ [rel'k, (t)dtjz
0
+ ek, (t)dt
L 0
<o, (f5 2" )(1 + \/g)j'tze%‘t‘Ka (t)dt.
0

So, the equality
[eerK, (t)dt=y(x,. @)~ 2%,8(x,. @)
0

and taking f

Lo OO =[ua T 24 (x) it follows
that

HA(f; X, a)— f (X)”

Sa)p,q(f’; /I’l)

P, q

( ( \/;/ -2%,8(%,, @) )),

for &« — 0". This proves Theorem 2.
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3 Global
Property

In this section we state an estimation that satisfies the
global smoothness preservation property. This property
is studied for different modulus of smoothness in [2].

Theorem 3. Forevery fel, (J)and o>0
Wo.q (Aa( f );0) <DW,q(f;0),
where D, = jeq‘t‘ K, (t) <o

Smoothness Preservation

)
Proof. Since fKa (t)=1, we have
0

A, (Fix+h)=A(F=[(1
]
Using this equality we obtain

1

/o
(J'|Aa(f;x+ h)-A,( f;x)|peqxde
p /b
e"”dx}

[;

<I£ﬂ (x+t+h)—f(x+ h))‘pe’qxdx}ﬁ) K, (t)dt.

By the definition of the weighted modulus of
smoothness we have

[(F (x+teh)=f (x+h))K, (t)dt

0

)}

)
(-”Aa( fix+ h)— A ( f;X)|pequXJ

<W,,(f;h)[e" K, (t)dt.
0
Thus we have

Wi (A, (1):h) < DW,o(f3h).
This proves Theorem 3.
Example 1. Let S, be the positive Gauss-Weierstrass

operators defined as

S(f;x, a)=S,( :—f (x+t)e dt

(see [1] for more details). It is easy to calculate that

S(te"I l x,a):x P
0 O(p_aq)

Oy 2.3
S(t2e3‘t °‘,x0,a)=x§ P, 2ap -,

(P-aq) (p-aq)
Then, by comparing these with (2)

where 0<a<<.
and (3) we obtain

(x+t+h)—f(x+1))K, (t)dt.

p
C,=r"—,
(p-aq)
,B(Xo,a)zo,
a2p3
(% @)= ——=,
(p-aq)
and
D, = <oofor0<a<l.
1-aq q
Note that \/y(xo, a)—2%,B(%,a)—0 and C, <o for
p

0 <a <—. Applying theorems 1, 2 and 3, we obtain
q

S.(N)(X)= ()], =0(@.q(F: 47 (4 @),
5. (1)) =T ()], , =0 (.o (15 7 (. @),

where f el f'eL _ and 0<a<£. Also we have

p.q? p.q
1
Jor O0<a<—,
Wp q (Sa (t);d) < _anp,q (t;o-)
with o> 0.
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