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Abstract: - This paper presents a new method based on quite recently proposed fluctuation expansion for the
evaluation of certain operators’ expectation values over Hilbert spaces. The fluctuation expansion has been
constructed with the aid of a projection operator which projects to a one dimensional subspace of the Hilbert
space under consideration. We, now, extend this idea to the utilization of projections to multidimensional sub-
space of the same Hilbert space. We take a univariate integral under a Gaussian weight (that is, bell like shaped
function) and keep only zeroth order terms which contain no fluctuation functions. After some matrix algebraic
manipulations we obtain an interpolation formula as a linear combination of the integral’s kernel function’s val-
ues at the eigenvalues of the matrix which is a upperleftmost truncation from the matrix representation of the
independent variable
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1 Introduction
We have recently offered a new method for the nu-
merical evaluation of univariate integrals[1-4]. The
integrand of the integral has been considered as the
product of two given functions, one of which is spec-
ified as a weight function. That is,

I ≡
∫ b

a
dxW(x) f (x) (1)

where W(x) stands for the weight function and all
entities are assumed to be real valued for simplic-
ity. Since the weight function can vanish only at a
finite number of the points of the integration domain
and remains positive elsewhere in the same domain
by definition, we have considered its positive square
root as a wave function of the quantum mechanics
and have written

W(x) ≡ ψ(x)2 (2)

where ψ(x) denotes the so-called wave function. The
weight function’s integral over the domain has been
assumed to be 1 for providing consistency to proba-
bilistic issues since we need to use those tools for the
employment of expectation or mean value concepts.
That is,

∫ b

a
dxW(x) ≡

∫ b

a
dxψ(x)2 = 1. (3)

Then the integral has been interpreted as the expec-
tation value of the function f (x) with respect to the

wave function mentioned above through the follow-
ing formula

〈 f (x)〉 ≡
∫ b

a
dxW(x)ψ(x) f (x)ψ(x) (4)

We have assumed that f (x) is continuous everywhere
in a domain including the integration interval in the
integration variable’s complex plane and square inte-
grable over the interval [ a, b ] to provide the utiliza-
tion of Hilbert space concepts . This enabled us to
expand f (x) into a Taylor series at a point, say c, in
the integration interval as follows

f (x) =
∞

∑

k=0

1
k!

f (k)(c)(x − c)k (5)

where superscript (k) stands for the k–th derivative.
The next step has been the replacement of (4) with
the following equation by using (5)

〈 f (x)〉 =
∞

∑

k=0

1
k!

f (k)(c)
〈

(x − c)k
〉

. (6)

After this point we have defined the following oper-
ators

Ig(x) ≡ g(x),

Pψg(x) ≡
(∫ b

a
dxψ(x)g(x)

)

ψ(x) (7)
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where I and Pψ denote the unit operator and the pro-
jection operator which projects to the subspace span-
ned by ψ(x) in the space of square integrable func-
tions over the interval [ a, b ]. g(x) represents any
function chosen from the set of functions which are
square integrable over the interval [ a, b ]. To make a
concrete analogy to the quantum mechanics we have
assumed that this space is a Hilbert space, in other
words, distance between two points, the norm of any
element (vector) of the space and the angle between
two vectors, are all defined and, beyond these, the
space is assumed to be complete. The complemen-
tary companion of Pψ is, of course, simply I − Pψ.
By keeping this fact in mind we have written the fol-
lowing equality

〈

(x−c)k
〉

=

〈

(x−c)
{[

Pψ+
(

I−Pψ

) ]

(x−c)
}k−1

〉

(8)

which is required and remains valid for all positive
integer k values. Its right hand side should be as-
sumed to be 1 when k vanishes.

In the cases where the wave function ψ(x) is al-
most sharply localized around a single point in the
interval of integration (as a well-known example of
sharply localized functions we can address to the del-
ta function of Dirac) we can conjecture that Pψ over-
dominates its complement, that is, behaves like or
goes to, unit operator as can be shown via an analy-
sis based on distribution theoretical tools[5]. Hence,
we can rewrite (8) as the following approximation
formula
〈

(x−c)k
〉

≈
〈

(x−c)
{

Pψ(x−c)
}k−1

〉

= 〈(x − c)〉k (9)

where the equality between the leftmost and right-
most terms holds for all nonnegative values of k.
This equality can be used to construct the follow-
ing approximate equality for the expectation value
of f (x)

〈 f (x)〉 ≈ f (〈x〉) (10)

where the error terms contain the expectation value
of x and the following entities

ϕk(c) ≡
〈

(x − c)
{[

I − Pψ

]

(x − c)
}k
〉

(11)

where the integer parameter k varies between 1 (in-
clusive) and infinity. Amongst these functions, ϕ1(c)
is directly related to the standart deviation because of
its following reduced form

ϕ1(c) =
〈

x2
〉

−
〈

x
〉2

(12)

The wave function depends on not only space
coordinates but also on time in quantum dynamics
where the evolution of the system in time is at the
focus. Hence, in the case of the quantum dynamical
problems, the integral I of (1) becomes a paramet-
ric integral since its kernel and therefore its weight
function depends on time parameter. This is reflected
as a time dependence in the wave function. Hence,
ϕk entities above also become time dependent. This
results in time dependent, or in quantum dynamical
terminology, temporally fluctuating function. Hence,
despite the nonexistence of time dependence here,
we call these entities fluctuation functions. In ϕk,
k characterizes the number of the apperances of the
operator

[

I − Pψ

]

which is responsible for the fluc-
tuation (or deviation for the limited case here) in the
error term of (10) and the argument c, which gives
function structure to ϕs, denotes the focus of the ex-
pansion. Therefore, we explicitly call ϕk(c) “k-th Or-
der Fluctuation Function at the Point c”. Although
we have assumed that k does not vanish we can ex-
tend the definition of ϕk(c) to cover k = 0 where
the fluctuation function becomes the difference be-
tween the expectation value of x and c. The only
way to make this fluctuation zero is to take c = 〈x〉.
All these mean that (10) is a zeroth order fluctuation
expansion around the point where x takes its expec-
tation value. We do not intend to give full details of
the complete analysis presented in our recent works
since we are intending to use only zeroth order fluc-
tuation expansion, that is, the expression obtained by
ignoring the first and higher order terms (the terms
containing at least first power of

[

I − Pψ

]

) in the
fluctuation expansion of the expectation value of the
function f (x). We use the zeroth order approxima-
tion under a new projection operator which projects
to a subspace spanned by not only a single func-
tion but a set of orthogonal functions. We also make
specifications about the integral limits and the weight
function here.

Paper is organized as follows. The second sec-
tion presents the formulation of the new method pro-
posed here. Third section is about the calculation of
certain universal constants. Fourth section contains
certain numerical comparisons. Fifth section final-
izes the paper by giving concluding remarks.

2 Formulation of the Method
Let us specify the interval as (−∞,∞) and the weight
function in (1) as follows

W(x, t, u) =
1
√
πt

e−
(x−u)2

t2 (13)

where t is a positive parameter and u stands for a real
parameter. (13) defines the wave function as follows
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ψ(x, t, u) =
1

π
1
4
√

t
e−

(x−u)2

2t2 (14)

We can now rewrite (1) as

I(t, u) =
∫ ∞

∞
dxψ(x, t, u) f (x)ψ(x, t, u) (15)

then consider the Hilbert space spanned by the func-
tions which are square integrable under the weight
function W(x). The nonnegative integer powers of x
form a basis set for this space since any function in
this Hilbert space can be expressed as a linear com-
bination of these functions as long as it is continous
everywhere except infinity. Gram-Schmidt orthonor-
malization of this set produces the basis set whose
elements are given through the following equality

φn(x, t, u) ≡ An(t)e−
(x−u)2

2t2 Hn−1

(

(x − u)
t

)

(16)

where the positive integer n starts from 1 and runs up
to infinity and the symbol Hn−1 stands for the Her-
mite polynomials[6]. The normalization constant An
is explicitly given as follows

An(t) ≡ 1

π
1
4 2 n−1

2
√

(n − 1)!
√

t
(17)

Let us define the following projection operator

Png(x) ≡
n

∑

k=1

(∫ ∞

−∞
dxφk(x, t, u)g(x)

)

φk(x, t, u) (18)

where g(x) is any function chosen from the Hilbert
space spanned by φk(x, t, u), (k = 1, 2, ...) and n
stands for a positive integer. This operator apparently
truncates the representation of any given function in
the Hilbert space mentioned above to a finite linear
combination of the orthonormal basis functions de-
fined above. In other words, it projects any given
function in the Hilbert space spanned by φk(x, t, u),
(k = 1, 2, ...) functions to the subspace spanned by
first n basis functions, that is, φk(x, t, u), (1 ≤ k ≤
n). This multidimensionality of the subspace onto
which the projection operator transforms is the basic
extension of the fluctuation expansion here.

We can now proceed by using this operator as a
first approximation to unit operator. Since we can
write

(x − c)m = I {(x − c)I}m (19)

we can get the following approximation by staying at
the zeroth order truncation of a fluctuation expansion
via Pn

(x − c)m ≈ Pn {(x − c)Pn}m (20)

where n and m stand for a positive and a nonega-
tive integer respectively. Since a careful glance at
the definition of the wave function shows that

ψ(x, t, u) = φ1(x, t, u) (21)

we can write

〈(x − c)m〉 ≈
〈

{(x − c)Pn}m−1 (x − c)
〉

(22)

where we have used the fact that the action of Pn on
φ1(x, t, u) is again φ1(x, t, u) because it is same as
the unit operator on the space spanned by φ1(x, t, u).
If we define an (n × n) type matrix Xn(t, u) whose
elements are given through the following equalities

X(n)
jk (t, u) ≡

∫ ∞

−∞
dxφ j(x, t, u)xφk(x, t, u) (23)

where j and k are positive integers varying between
1 and n inclusive, then, we can rewrite (22) as the
following quadratic form

〈(x − c)m〉 ≈ e(n)
1

T
(Xn(t, u) − cIn)m e(n)

1 (24)

where In and e(n)
1 represent n dimensional unit ma-

trix and the first cartesian unit vector, whose only
nonzero element is 1 and located at the first position,
in n–th dimensional Euclid space. Equation (24) en-
ables us to write

〈 f (x− c)〉≈
∞

∑

m=0

1
m!

f (m)(c)e(n)
1

T
(Xn(t, u)− cIn)m e(n)

1

(25)
and therefore

〈 f (x − c)〉 ≈ e(n)
1

T
f (Xn(t, u)) e(n)

1 (26)

as long as f (x) converges everywhere except perhaps
infinity in the complex plane of x.

Now, for further simplification, we can deal with
the structure of the matrix Xn(t, u) and write

∫ ∞

−∞
dxφ j(x, t, u)

( x − u
t

)

φk(x, t, u)

=
π−

1
2 21− j+k

2

√

( j − 1)!(k − 1)!

∫ ∞

−∞
dξe−ξ

2
H j−1(ξ)ξHk−1(ξ) (27)
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where the integers j and k start from 1 and run up to
and including n. The right hand side of this equlity
does not depend on t and u as can be noticed immedi-
ately. This independence urges us to define an (n×n)
type matrix Ξn whose elements are defined through
the following equality

Ξ jk ≡
∫ ∞

−∞
dxφ j(x, t, u)

(x − u
t

)

φk(x, t, u) (28)

where j and k stand for positive integers less than
or equal to n. We can now express Xn(t, u) in terms
of Ξn after a careful look at the structures of those
matrices as given below

Xn(t, u) = uIn + tΞn (29)

which enables us to rewrite (26) as

〈 f (x − c)〉 ≈ e(n)
1

T
f (uIn + tΞn) e(n)

1 (30)

and therefore as

I(t, u) ≈ e(n)
1

T
f (uIn + tΞn) e(n)

1 (31)

To proceed towards the ultimate form of our ap-
proximation formula we need to explicitly express
the kernel matrix of the quadratic form above. To
this end we can use the Cayley – Hamilton Theorem
and write (ak parameters are unknown yet)

f (uIn + tΞn) =
n−1
∑

k=1

akΞ
k−1
n (32)

If we postmultiply both sides of this equation by the
j–th eigenvector of Ξn and denote its corresponding
eigenvalue by ξ j,n then we can write

f
(

u + tξ j,n

)

=

n
∑

k=1

akξ
k−1
j,n , 1 ≤ j ≤ n (33)

which can be put into the following matrix form

Vnan = fn (34)

where

aT
n ≡ [ a1 ... an ] (35)

fT
n ≡ [

f (u + ξ1,n) ... f (u + ξn,n)
]

(36)

and

Vn ≡



































1 ξ1,n ξ2
1,n · · · ξn−1

1,n
1 ξ2,n ξ2

2,n · · · ξn−1
2,n

...
...

...
. . .

...

1 ξn,n ξ2
n,n · · · ξn−1

n,n



































(37)

Now, (31) and (32) lead us to write

I(t, u) = qT
n an (38)

where

qn ≡
[

q1,n ... qn,n
]

(39)

and

qk,n ≡ e(n)
1

T
Ξ

k−1
n e(n)

1 , 1 ≤ k ≤ n (40)

Equation (38) can be combined with (34) to get the
following equation as long as Vn is invertable.

I(t, u) = qT
n V−1

n fn (41)

If we define

wT
n = qT

n V−1
n (42)

where the elements of the vector wn are denoted by
w1,n, ..., wn,n respectively then we can get the ulti-
mate form of our approximation formula as follows

I(t, u) ≈
n

∑

k=1

wk,n f (u + tξk,n) (43)

We call w1,n, ..., wn,n values “weights” and ξ1,n, ...,
ξn,n values “nodes” within an analogy to the Gauss
quadratures.

3 Evaluation of Universal Constants
To finalize our method what we need is the evalua-
tion of weights and nodes. Since these entities are di-
rectly related to Ξn which is free of f (x) the weights
and nodes are universal. Hence, once they are eval-
uated for a specific n value they can be used in (43)
for any f (x) under some constraints like to be con-
tinuos. This section is therefore devoted to the eval-
uations of these universal constants. To this end we
can start with the following recursion between con-
secutive Hermite polynomials

Hn+1(x) = 2xHn(x) − 2nHn−1(x) (44)

which is valid for all nonnegative integer values of n
by assuming H−1(x) identically zero. If we keep in
mind the facts

∫ ∞

−∞
dξe−x2

H j(x)Hk(x) = δ j,k2 j j!
√
π (45)

and

δ j,ka j,k = a j, j = ak,k (46)
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where δ j,k and a j,k stand for the Kroenecker’s symbol
and any two-indexed-entity respectively then we can
arrive at the following equality

Ξ j,k =

√

k
2
δ j, k + 1 +

√

k − 1
2

δ j, k − 1 (47)

where j and k take integer values between 1 and n
inclusive. Ξn is apparently a symmetric matrix and,
beyond this, its only nonzero diagonals are the up-
per and lower adjacent neighbors of the main diag-
onal. The elements of these diagonals are 1/

√
2, 1,√

3/2, ...,
√

(n − 1)/2 in downward ordering. By us-
ing these values it is possible to numerically evaluate
the eigenvalues of Ξn. These eigenvalues which are
nodes in fact permit us to determine Vn and therefore
all weights. Numerical calculations can be realized
by using any software which is capable of doing what
we want. Here we have used MuPAD Computer Sys-
tem Algebra developed by Paderborn University in
Germany[7] because its capability of performing cal-
culations at any desired level of accuracy and also its
symbolic programming features. We report the re-
sults for 5, 10, and 15 values of n here. They are
given below

n = 5
ξ1,5 = −ξ5,5 = 2.02018287045608563293
ξ2,5 = −ξ4,5 = 0.95857246461381850711

ξ3,5 = 0.00000000000000000000
w1,5 = w5,5 = 0.01125741132772068893
w2,5 = w4,5 = 0.22207592200561264440

w3,5 = 0.53333333333333333333

n = 10
ξ1,10 = −ξ10,10 = 3.43615911883773760333
ξ2,10 = −ξ9,10 = 2.53273167423278979641
ξ3,10 = −ξ8,10 = 1.75668364929988177345
ξ4,10 = −ξ7,10 = 1.03661082978951365418
ξ5,10 = −ξ6,10 = 0.34290132722370460879
w1,10 = w10,10 = 0.00000431065263071828
w2,10 = w9,10 = 0.00075807093431221767
w3,10 = w8,10 = 0.01911158050077028561
w4,10 = w7,10 = 0.13548370298026773556
w5,10 = w6,10 = 0.34464233493201904288

n = 15
ξ1,15 = −ξ15,10 = 4.49999070730939155366
ξ2,15 = −ξ14,15 = 3.66995037340445253473
ξ3,15 = −ξ13,15 = 2.96716692790560324849
ξ4,15 = −ξ12,15 = 2.32573248617385774545
ξ5,15 = −ξ11,15 = 1.71999257518648893242
ξ6,15 = −ξ10,15 = 1.13611558521092066632
ξ7,15 = −ξ9,15 = 0.56506958325557574853

ξ8,15 = 0.00000000000000000000

w1,15 = w15,15 = 0.00000000085896498996
w2,15 = w14,15 = 0.00000059754195979206
w3,15 = w13,15 = 0.00005642146405189017
w4,15 = w12,15 = 0.00156735750354995621
w5,15 = w11,15 = 0.01736577449213760635
w6,15 = w10,15 = 0.08941779539984440217
w7,15 = w9,15 = 0.23246229360973223332

w8,15 = 0.31825951825951825952

These result are obtained within 100 decimal digit
accuracy under MuPAD and only first 20 fractional
digits are reported. the fractional digits beyond the
twentieth one are rounded to 20th fractional digit.
The symmetry in the results is easily noticable. The
sum of weights are all equal to 1. This makes mean-
ingful to use the word “weight” for the naming of
these entities.

4 Numerical Efficiency
We have applied our presented method to various
functions. All of them are encouraging and promis-
ing although higher values of n may be required de-
pending on how continuous f (x) is or how the Tay-
lor series expansion of f (x) converges. We do not
intend to report anyone of them. Instead, we are go-
ing to give the comparison between the exact and ap-
proximate values of the Taylor series expansion of
the integral’s value with respect to t. To this end we
can start with (15) and obtain the following equation
by an appropriate coordinate transformation

I(t, u) =
1
√
π

∫ ∞

−∞
dxe−x2

f (u + tx) (48)

which can be rewritten as follows

I(t, u) =
∞

∑

k=0

1 + (−1)k

2

Γ
(

k+1
2

)

k!
√
π

f (k)(u)tk (49)

by expanding f (u + tx) into a power series of t.
On the other hand, (43) can be treated in the same

manner as well. This gives

I(t, u) ≈
∞
∑

k=0

f (k)(u)
k!

















n
∑

j=1

w j,nξ
k
j,n

















tk (50)

which urges us to compare the coefficients of tk in the
last two equalities. In both (49) and (50) all odd pow-
ers of t vanish. This, in fact, spontaneously removes
the positivity requirement on t. For n = 5, the co-
efficient of f (2k)(u)t2k in the approximate expression
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(50) deviates from its counterpart in the exact expres-
sion (49) when k is greater than or equal to 5. The
other coefficients match within 19 fractional decimal
digit accuracy. Indeed the coefficients of f (10)(u)t10

for the exact and approximate expressions are rough-
ly 8.138×10−6 and 7.105×10−6 respectively. In the
case where n = 10 situation is almost same however
first 19 coefficients match instead of 9 and match-
ing is not at the level of 19 but 15 fractional decimal
digit accuracy. Remarkable deviations start from the
20. coefficient. Similar behavior is observed for the
case where n = 15. All these mean that the number
of the correct digits should be increased in the weight
and node values to get always same precision and the
accuracy is about o(t2n). We suffice with this discus-
sion here although this is rather qualitative and not
precise error estimation since it is out of the scope of
this work.

5 Concluding Remarks
We have presented a new extended form of the re-
cently developed fluctuation expansion method in the
evaluation of univariate integrals having Gaussian
type weight function.

The new extension of the fluctuation method here
is the utilization of a subspace spanned by not just
a single but more than one functions in the Hilbert
space of the square integrable functions over the do-
main of the integral. We do not take the first and
higher order contributions in the fluctuation expan-
sion. We keep only the terms having no fluctuation
functions in the expansion. At the final form, we
could have been able to get a Gauss quadrature like
expression by using matrix algebraic tools.

The parameter t appearing in the denominator of
the Gaussian weight function plays the most impor-
tant role in the analysis. Its vanishing value makes
the weight function a Dirac’s delta distribution lo-
cated at the point where x = u in the interval. Hence
the series expansion of the integral in powers of t
somehow corresponds to the expansion of the weight
function to a linear combination of Dirac’s delta
function and its derivatives.

Two items are important in the numerical effi-
ciency of the formula constructed here. First one is
the approximate match between the approximation
formula derived here and the series expansion of the
integral in powers of t. Exact match occurs for a fi-
nite number of the coefficients of these two entities in
ascending powers of t and this finite number depends
on the value of the method’s subspace’s dimension n.
Denumerably infinite number of remaining terms re-
lated to higher powers of t in approximate formula
deviate from their counterparts in the exact formula.

The second important thing is the need for increas-
ing high precision in the calculations as n grows. For
the first item, we do not always need power series ex-
pansions in fact. Only the values of f (x) at nodes are
required unless we are enforced to use power series
for some mathematical reasons. On the other hand,
high accuracy in the calculations when it is neces-
sary requires the employment of the multiprecision
algorithms. This can be done mostly by using sym-
bolic and/or high performance computational soft-
wares like MuPAD, Mathematica, REDUCE, Maple,
Macsyma and so on.
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