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Abstract:-The permanent magnet linear synchronous motor (PMLSM) is sensitive to various disturbances such 
as the load disturbances, parameter perturbations, end effect and so on. To overcome this trouble, a new 
nonlinear robust controller using the homogeneity-based higher-order sliding mode control technique for the 
PMLSM is proposed. The detailed systematic controller design procedure is discussed. A 
digital-signal-processor (DSP) –based PMLSM position control system is implemented. The simulation and 
experimental results under different parameter and load variations are discussed and compared. The proposed 
control system shows good robustness and high accuracy in spite of the uncertainties, which confirms the 
theoretical analysis. 
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1 Introduction 
Unlike rotary motors, it is not required for linear 
motors to indirectly couple mechanisms such as gear 
boxes, chains and screws, which will greatly reduce 
the effects of contact-types of nonlinearities and 
disturbances such as backlash and frictional forces 
[1]. The advantages of the PMLSM include simple 
mechanical construction, high speed, high 
acceleration and high motion precision. Therefore, 
the PMLSM is suitable for high-performance servo 
applications and has been used widely for the 
industrial robots, machine tools, semiconductor 
manufacturing systems, X-Y driving devices and so 
on [2, 3]. However, the PMLSM is sensitive to the 
load disturbances and parameter perturbations in the 
servo drive system because it is not equipped with 
auxiliary mechanisms such as gears or ball screws. In 
addition, the end effect makes the thrust force control 
more difficult [4]. How to compensate these 
disturbances which directly impose on the mover of 
the PMLSM and cause unsatisfying dynamic 
performance is very important in direct drive 
applications. 

Due to the typical precision positioning 
requirements and low offset tolerance of their 
applications, the control of the PMLSM under the 
influence of disturbances is particularly challenging 
since the conventional PID control usually may not 
suffice in these application domains [5]. There has 
been considerable research on applications of 
advanced control schemes for the PMLSM. A 
disturbance suppression control system with the 
force feedforward action to suppress the effect of 
disturbances was presented in [6]. In such a system, 

the disturbances can be detected by the disturbance 
observer. Feedforward control is used in the force or 
torque controllers to obtain robustness. However, the 
inverse dynamic based disturbance observer cannot 
guarantee sufficient robustness for the servo drive 
system if the disturbances are large. The linearization 
method has been successfully used for the PMLSM 
[7]. This method, however, requires accurate 
parameters of the PMLSM and complex control 
procedures. In last few years, some research has 
focused on applications of the feedforward neural 
network (NN) for the PMLSM. In [8], an on-line 
trained fuzzy NN (FNN) controller was proposed to 
control a permanent magnet synchronous servo 
motor drive. However, the FNN’s application 
domain is limited to the static problem due to the 
feedforward network structure, and the weight 
updates of the feedforward NN do not utilize the 
internal information of the NN, and the function 
approximation is sensitive to the training data.  
    The standard sliding mode control technique in 
the variable structure control is a very effective 
nonlinear robust control approach. The basic idea is 
to force the state via a discontinuous feedback to 
move on a prescribed manifold [9-11]. However, the 
specific problem entailed by this technique is the 
chattering effect which influences the practical 
applications. This paper focuses on the application of 
the homogeneity-based higher-order sliding mode 
control technique for the PMLSM control system. By 
using this approach, the chattering effect is totally 
removed, and higher-order precision is provided 
whereas all the qualities of standard sliding mode are 
kept. Meanwhile, the homogeneity provides for the 
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highest possible asymptotic accuracy in the presence 
of the uncertainties [17]. To the authors’ best 
knowledge, this is the first time that the 
homogeneity-based higher-order sliding mode 
control algorithm is applied to the PMLSM position 
control system. Both the simulation and experimental 
results show the proposed controller has a good 
disturbance-rejection performance and tracks 
different position commands well compared with the 
conventional three-closed-loop PID controller. Thus, 
the effectiveness of the proposed system and 
correctness of the theoretical analysis are testified. 

 
 

2 Mathematical Model of PMLSM 
As shown in Fig.1, the PMLSM studied in this paper 
is a single-side flat motor which comprises a long 
stationary “secondary” and a moving short “primary”. 
The secondary is equipped with a sequence of 
Neodymium-Iron-Boron (NdFeB) permanent-magnet 
with a guidance rail and linear scale. The primary 
contains the core armature winding and Hall sensing 
elements. The electromagnetic thrust force is 
generated by the interaction between the secondary 
NdFeB magnet and magnetic field of AC windings in 
the mover driven by a pulse width modulation (PWM) 
voltage source inverter. The motion of the PMLSM 
is highly controllable as the electromagnetic thrust 
force is directly added to the mechanical system 
without coupling mechanism. 

 
Fig.1. PMLSM used for study 

The d-q dynamic model for the PMLSM is 
studied. The d-q coordinate system is a “rotating” 
reference frame that moves at a synchronous speed. 
The voltage equations of the PMLSM can be 
described as follows [12]:                        

d
d d p q

d
U Ri n v

dt
λ π λ

τ
= + −              (1) 

q
q q p d

d
U Ri n v

dt
λ π λ

τ
= + +              (2) 

d d dL iλ ψ= +                      (3) 

q q qL iλ =                          (4) 

where dλ  and qλ  are the direct-axis and 
quadrature-axis primary flux, respectively; v  is the 

linear speed of the mover; dU  and qU  are the 
direct-axis and quadrature-axis primary voltage, 
respectively; di  and qi  are the direct-axis and 
quadrature-axis primary current, respectively; R  is 
the primary winding resistance; dL  and qL  are the 
direct-axis and quadrature-axis primary inductance, 
respectively; pn  stands for the number of the pole 
pairs; ψ  and τ  are the permanent magnet flux 
and polar pitch, respectively. 
    The electromagnetic thrust force is  

3 [ ( ) ]
2

p q d q d qe
e

n i L L i iP
F

v
π ψ

τ
+ −

= =         (5) 

and the mover dynamic equation is  

e l d
dvF M Bv F F
dt

= + + +               (6) 

where eP  is the electromagnetic power; M  is the 
mass of the primary part; B  is the viscous damping 
coefficient; lF  and dF are the load force and end 
effect force, respectively.  

The machine considered is a surface mounted 
PMLSM, so the quadrature-axis primary inductance 
is equivalent to the direct-axis inductance, namely, 

d qL L L= = . The number of the pole pairs of the 
PMLSM is 1pn = . Thus, the dynamics of the 
PMLSM can be derived from (1)-(6) as follows: 

1d
d q d

di R i vi U
dt L L

π
τ

= − + +            (7a) 

1q
q d q

di R i vi v U
dt L L L

π ψπ
τ τ

= − − − +       (7b) 

3 1 ( )
2 q l d

dv Bi v F F
dt M M M

πψ
τ

= − − +       (7c) 

For the sake of terseness, we note 
that ( ) ( )1 2 3 4, , , , , ,

TT
d qX x x x x i i S v= = , where S is the 

linear position of the mover. Let u  denote the input 

1 2[    ] [    ]T T
d qu u u u u= = . The formalization of the 

parameters is stated as 
1 2 3 4/ ,  / ,  1/ ,  / ,  p R L p v p L p Lπ τ ψπ τ= − = = = −  

5 63 / 2 ,  / ,  L l dp M p B M F F Fπψ τ= = − = + . 
Then the dynamic equation of the PMLSM can be 
rewritten as   

1 1 1 2 2 4 3 1x p x p x x p u= + +&              (8a) 

2 1 2 2 1 4 4 4 3 2x p x p x x p x p u= − + +&        (8b) 

3 4x x=&                           (8c) 

4 5 2 6 4 /Lx p x p x F M= + −&             (8d) 
    The controller is designed to guarantee the 
robust performance in presence of parameters and 
load variations. The field-oriented-control is 
employed, namely, the reference value of the 
direct-axis primary current 1 0dx = . The linear 
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position of the mover must track a reference 
trajectory 3dx . 
 
 
3 Proposition of Control Strategy for 
PMLSM 
As we all know, the standard sliding mode features are 
high accuracy and robustness with respect to various 
internal and external disturbances. It may be 
implemented only if the relative degree of the 
constraint is 1, i.e. control has to appear explicitly 
already in the first total time derivative of the 
constraint function. Also, high-frequency control 
switching may cause the so-called chattering effect 
[13]. Some researchers relate the chattering behavior 
to the discontinuity of the sign function on the sliding 
variable. To overcome the problem, they suggest to 
replace the sign function in a small vicinity of the 
surface by a smooth approximation, which implies a 
small deterioration of accuracy and robustness [14, 15]. 
In recent years, an approach called “high-order sliding 
mode” has been proposed. Consider a smooth dynamic 
system with a smooth output function σ , and let the 
system be closed by some possibly-dynamical 
discontinuous feedback. Then provided that successive 
total time derivatives σ , σ& , …, ( 1)rσ −  are 
continuous functions of the closed-system state-space 
variables and the set ( 1)... 0rσ σ σ −= = = =&  is 
non-empty and consists locally of Filipov trajectories, 
the motion on the set ( 1)... 0rσ σ σ −= = = =&  is called 
r-sliding mode (rth order sliding mode). The rth 
derivative ( )rσ  is mostly supposed to be 
discontinuous or non-existent. Almost all known 
higher-order sliding mode controllers possess specific 
homogeneity properties. The corresponding 
homogeneity of r-sliding controllers is called the 
rth-order sliding homogeneity in [16]. The 
homogeneity makes the convergence proofs of the 
higher-order sliding mode controllers standard and 
provides for the highest possible asymptotic accuracy 
in the presence of the noises, delays and discrete 
measurements [17]. 
 
 
3.1  Homogeneity-Based Higher-order 

Sliding Mode Control 
Consider a dynamic system of the form 

( ) ( )x a x b x u= +& ,  ( , )y x tσ=             (9) 

where nx∈R  is the state variable; u∈R  is control; 
σ ∈R  is a measured output; the smooth functions 

, ,a b σ  are assumed unknown.; the dimension n  can 
also be uncertain. The control objective is to make the 
output σ  vanish in finite time and to keep 0σ ≡ .  
    The output σ satisfies an equation of the form 

( )
( ) ( )

0
( , ) ( , ) ,   0,   

r
r r

v
h x t g x t v g h

v
σσ σ

=

∂
= + = ≠ =

∂
(10) 

where h  and g  are unknown smooth functions, and 
v  is the actual control instead of u  which is 
considered as an additional coordinate increasing the 
dimension of the initial state space to a unit. Suppose that 
the inequalities  

0 ( , )m MK g x t K< ≤ ≤ , ( , )h x t C≤         (11) 
hold for some , , 0m MK K C > . (10) and (11) imply the 
differential inclusion 

( ) [ , ] [ , ]r
m MC C K K vσ ∈ − +           (12) 

    A bounded feedback control  
       ( 1)( , ,..., )rv ϕ σ σ σ −= &             (13) 

is constructed such that all trajectories of (12), (13) 
converge in finite time to the origin 

( 1)... 0rσ σ σ −= = = =&  of the r-sliding phase space. A 
differential inclusion ( )x F x∈&  is further called a 
Filippov differential inclusion if the vector set ( )F x  is 
non-empty, closed, convex, locally bounded and 
upper-semicontinuous [18]. 
 
Definition 1.  A function  :  nf →R R (respectively, a 

vector-set field ( ) ,   n nF x x⊂ ∈R R  or a vector field 

:  n nf →R R ) is called homogeneous of the degree 
q∈R  with the dilation 

1 2: ( , ,..., )nd x x xκ a 1 2
1 2( , ,..., )nmm m

nx x xκ κ κ , where 

1,..., nm m  are some positive numbers (weights), if for 

any 0κ >  the identity 1( ) ( )qf x d f d xκ κκ − −=  holds 

(respectively, 1( ) ( )qF x d F d xκ κκ − −= , or 
1( ) ( )qf x d f d xκ κκ − −= ). The non-zero homogeneity 

degree q of a vector field can always be scaled to 1±  by 
an appropriate proportional change of the weights 

1,..., nm m . 
 
    Note that the homogeneity of a vector field ( )f x  
(a vector-set field ( )F x ) can be equivalently be defined 
as the invariance of the differential equation ( )x f x∈&  
(differential inclusion ( )x F x∈& ) with respect to the 
combined time-coordinate transformation: 
 :  ( , ) ( , ),pG t x t d x p qκ κκ = −a . 
 
Property 1. A differential inclusion ( )x F x∈&  (equation 

( )x f x=& ) is further called globally uniformly finite-time 
stable at 0, if it is Lyapunov stable and for any R>0 
exists T>0, such that any trajectory starting within the 
disk x R<  stabilizes at zeros in the time T. 
 
Property 2. A differential inclusion ( )x F x∈&   
(equation ( )x f x=& ) is further called globally uniformly 
asymptotically stable at 0, if it is Lyapunov stable and for 
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any R>0, 0ε > , T>0 exists such that any trajectory 
starting within the disk x R<  enters the disk x ε<  
in the time T to stay there forever. A set D is called 
retractable if d D Dκ ⊂  for any 1κ < . 
 
Property 3. A homogeneous differential inclusion 

( )x F x∈&  (equation ( )x f x=& ) is further called 
contractive, if there are 2 compact sets 1D , 2D  and T>0 
such that 2D  lies in the interior of 1D  and contains 
the origin, 1D  is dilation-retractable, and all 
trajectories starting at the time 0 within 1D  are 
localized in 2D  at the time moment T. 
 
Theorem 1. Let ( )x F x∈&  be a homogeneous Filippov 
inclusion with a negative homogeneous degree –p. Then 
properties 1, 2 and 3 are equivalent and the maximal 
settling time is a continuous homogeneous function of the 
initial conditions of the degree p. 
 
Corollary 1. The global uniform finite-time stability of 
homogeneous differential equations (Filippov inclusions) 
with negative homogeneous degree is robust with respect 
to homogeneous perturbations causing locally small 
changes of the equation (inclusion) graph. 
 
Definition 2.  Scaling the system homogeneity degree to 

1− , achieve that the homogeneity weights of t , σ , 
σ& , …, ( 1)rσ −  are 1 , r , 1r − , …, 1 , respectively. 
This homogeneity is further called the r-sliding 
homogeneity. The inclusion (12), (13) and controller (13) 
are called r-sliding homogeneous if for any 0κ >  the 
combined time-coordinate transformation 

( 1) 1 ( 1): ( , , ,..., ) ( , , ,..., )r r r rG t tκ σ σ σ κ κ σ κ σ κσ− − −& &a  (14) 
preserves the closed-loop inclusion (12), (13). 
 
    Transformation (14) transfers (12), (13) into 

1 ( 1)( ) [ , ] [ , ] ( , ,..., )
( )

r r
r r r

m Mr
d C C K K

d t
κ σ ϕ κ σ κ σ κσ
κ

− −∈ − + &                       

(15) 
Hence, (13) is r-sliding homogeneous iff 

1 ( 1) ( 1)( , ,..., ) ( , ,..., )r r r rϕ κ σ κ σ κσ ϕ σ σ σ− − −≡& &     (16) 
Such a homogeneous controller is inevitably 
discontinuous at the origin (0, …, 0), unless ϕ  is a 
constant function. It is also uniformly bounded, since it is 
locally bounded and takes on all its values in any vicinity 
of the origin. 
    Let q  be the least common multiple of 1, 2, …, r , 
and 1 1,..., 0rβ β − > . Define 

( ) //( 1)/ /( 1) ( 1)
, ...

r i qq r iq r q r i
i rN σ σ σ

−− +− −⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

&      

                    (17) 
( )

0, , , 1,sign   ,    sign( )i
r i r i i r i rNϕ σ ϕ σ β ϕ −= = +  

1,..., 1i r= −                                (18) 

Then ( 1)
1, ( , ,..., )r

r rv αϕ σ σ σ −
−= − &  defines the standard 

r-sliding controller [16]. The main drawback of the 
controller is some trajectory chattering during the 
transient caused by the complicated structure of the 
control discontinuity set. The output-feedback 
performance with noisy measurements is also 
problematic. Corollary 1 allows new controller structures 
to be produced transforming known homogeneous 
controllers. Define the homogeneous norm and the 
saturation function [17] 

        
/ /( 1) ( 1) 1/

, ( ... )
qq r q r r q

r r rN N σ σ σ− −= = + + +&    (19) 

sat( , ) min[1,max( 1, / )]z zε ε= −           (20) 
    Let 1,..., 1i r= − . The construction is as follows:  
 0, sign  .rφ σ=   ( )

, , 1,sat( / , )i r i
i r i i r i r r iN Nφ σ β ϕ ε−

−⎡ ⎤= +⎣ ⎦         

(21) 
    Obviously ,i rφ  is homogeneous of the weight 0 
and continuous everywhere except  

( 1)... 0rσ σ σ −= = = =& . The controller 
( 1)

1, ( , ,..., )r
r rv αφ σ σ σ −
−= − &           (22) 

ensures the finite-time convergence to the r-sliding mode 
0σ ≡  with properly chosen α , iβ  and small iε . It 

can be shown that iβ  and iε  can be chosen once for 
each r , and only 0α >  is to be adjusted with respect 
to C , mK , MK . 
 
3.2 Design of the Homogeneity-Based Second 
-Order Sliding Mode Controller for PMLSM 
The content in this section is to design a MIMO 
homogeneity-based second-order sliding mode 
controller for the PMLSM. The aim is to force the 
direct-axis current 1x  and linear position 3x  to be 
the reference values 1dx  and 3dx  , respectively. 
Take  

     1 1 1 1dx x eσ = − =             (23) 
Note that the relative degree of 1σ  equals 1. Let 

3 3 3de x x= − , and  
       2 3 1 3 2 3e e eσ λ λ= + +&& &           (24) 

where 1λ  and 2λ  are positive constant numbers 
such that 1 2( )H z z z zλ λ= + +&& &  is  Hurwitz 
polynomial. The relative degree of 2σ  is also 1. 
Based on (8), the first and second time derivatives of 

1σ  can be achieved as follows 
                     

1 1 1 1 2 2 4 3 1 1de p x p x x p u xσ = = + + −& & &           (25) 
                             

1 1 1 2 2 4 2 2 4 1 3 1dp x p x x p x x x p uσ = + + − +&& & & & && &                

1 1 1 2 2 4 3 1( )p p x p x x p u= + +   

2 4 1 2 2 1 4 4 4 3 2( )p x p x p x x p x p u+ − + +       
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2 2 5 2 6 4 1 3 1( / )L dp x p x p x F M x p u+ + − − +&& &  
 1 1 1( ) ( )C x D x u= + &                          (26) 

The first and second time derivatives of 1σ  can also 
be obtained as follows 
                             

2 5 1 2 2 1 4 4 4 3 2( )p p x p x x p x p uσ = − + +&                                                                      

1 6 5 2 6 4( )( / )Lp p x p x F Mλ+ + + −  
(3)

2 4 1 3 2 33/L d ddF M x x x xλ λ λ− + − − −& && &         (27) 
(4) (3)

2 1 2 3 1 5 1 53 3 (dd dx x x p p pσ λ λ λ= − − − + +&& &&  

1 5 1 2 2 1 4 4 4 3 2)( )p p p x p x x p x p u+ − + +  
2

1 6 6 5 4 2 5 2 6 4( )( / )Lp p p x p x p x F Mλ λ+ + + + + −  

2 5 1 4 1 4 1 6 3 2( ) ( ) / /L Lp p x x x x p F M F M p uλ− + − + − +& &&& & &     

2 2 2( ) ( )C x D x u= + &                          (28) 
The generalized load force LF  is considered as a 
perturbation. Because the electromagnetic time 
constant is much smaller than the mechanical time 
constant, the variation of the generalized load force 

LF  is very slow compared with electrical variations. 

LF  is supposed to be bounded as well as is two first 
time derivatives. 1NC , 2NC , and 1 2 3N N ND D p= =  

Nd=  are the known nominal expressions by 
substituting the system nominal parameters into 

1( )C x , 2 ( )C x , 1( )D x  and 2 ( )D x . 
Let 

[ ]1 2( ) ( )    TC x D x u uσ = +&& & &         (29) 
where  

11 1

2 2 2

( )
( )

( )
N

N
N

CC x C
C x C C

C x C C
Δ⎛ ⎞⎛ ⎞ ⎛ ⎞

= = + = + Δ⎜ ⎟⎜ ⎟ ⎜ ⎟Δ⎝ ⎠ ⎝ ⎠⎝ ⎠
, 

1

2

0( ) 0 0
( )

00 ( ) 0
N

N

dD x d
D x

dD x d
Δ⎛ ⎞⎛ ⎞ ⎛ ⎞

= = +⎜ ⎟⎜ ⎟ ⎜ ⎟Δ⎝ ⎠⎝ ⎠ ⎝ ⎠
           

ND D= + Δ                        (30) 
CΔ  and DΔ  contain all the uncertainties due to 

parameters and load force variations. Since 3 0Np ≠ , 
the diagonal matrix ND  is reversible. However, the 
model (29) is uncertain. The conception of a feedback 
linearization technique is employed: 

    [ ] [ ]1
1 2 1 2    T T

N Nu u D C v v− ⎡ ⎤= − +⎣ ⎦
& &          (31) 

The actual input [ ]1 2  Tv v v=  is designed to stabilize 
the new system. Substitute (31) into (29), a new 
expression can be achieved  

1 111

2 222

ˆ ˆ 0
ˆˆ 0

vDC
vDC

σ
σ

⎡ ⎤ ⎛ ⎞⎡ ⎤ ⎡ ⎤
⎢ ⎥= + ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦

)
&&

&&
          (32) 

where 
1

1 1
ˆ N

N

dC
C C

d
Δ

= Δ −    2
2 2

ˆ N

N

dC
C C

d
Δ

= Δ −  

    1 2
ˆ ˆ 1

N

dD D
d
Δ

= = +                   (33) 

Thus, the MIMO problem is decoupled into a set of 
single-input problems which satisfy the requirements 
of homogeneity-based higher-order sliding mode 
control technique. Since the state variables and the 
perturbations of parameters are bounded, and under 
the assumption that 1 2d D DΔ < = , there exist 
positive constant numbers 1M , 2M , mK  and MK  
so that  

1 1Ĉ M<   2 2Ĉ M<  1 2
ˆ ˆ0 m MK D D K< < = <   (34) 

which is equivalent to (11). 
    The homogeneity approach to higher-order 
sliding mode design in the previous section is used to 
design the robust controller for PMLSM. Achieve 

2r = , 2q =  and let 1 0.2ε = , thus,  
2 1/ 2

2 2,2 ( )N N σ σ= = + &           (35) 

0,2 signφ σ= ,  
1/ 2 2 1/ 2

1,2 sat[( sign ) /( ) ,0.2]φ σ σ σ σ σ= + +& &      (36) 
According to (22), the homogeneity-based 2-sliding 
mode controller is designed as 

        
1/ 2 2 1/ 2sat[( sign ) /( ) ,0.2]j j j j j j jv α σ σ σ σ σ= − + +& & ,    

1,2j =                    (37) 
where , 1,2j jα =  is a chosen positive constant. 

 
3.3 Design of the Force Observer 

Since the generalized load force LF  is unknown, it 
can be replaced by its estimated value in (31). Because 
the variation of LF  is very slow compared with 
electrical variations, LF  can be considered as a constant 
in a small time range. LF  and the linear speed v  are 
chosen as new state variables. From (7), it can be 
obtained as 

d w
dt
ξ ξ= Η + Α                  (38) 

where  

( )T
LF vξ = ，

0 0 0 0
1

r r
B c a

M M

⎛ ⎞ ⎛ ⎞⎜ ⎟Η = = ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎝ ⎠⎝ ⎠

，

0 0
3
2 rb

M
πψ
τ

⎛ ⎞ ⎛ ⎞⎜ ⎟Α = = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

， qw i=  

Obviously, this system can be observed. The observer 
can be designed as follows: 

ˆ ˆ ˆ( )d w Q v E
dt
ξ ξ ξ= Η + Α + −           (39) 

where 1 2( )TP q q=  is a constant vector ， and 
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(0 1)E = . The nominal system parameters are used in 

(39). From (39), the estimated value LNF  of the 
generalized load force LF  can be obtained. The two 
first time derivatives of  LNF  are considered as zero. 
The construction of the load force observer is shown in 
Fig. 2.  

rb ∫

∫

ra
rc

2q

1q

w

LNF

v̂
v

+
-

++++

 
Fig.2. Construction of the force observer 

 
It should be noted that the quadrature-axis primary 

current can be made not to exceed its maximum 
permissible value in the PMLSM servo system by 
employing an asymptotic reference model of the position 
command. The proposed control system is shown in 
Fig.3. 

Sliding 
Manifold

Sliding 
Manifold

*
di

Observer

2σ

1σ

2v

1v

3e

1e

NC

1
ND−

LNF

qi

di

S

u&

+

-

+
-

+
-

+

*SReference 
Model

cmdS

PMLSM
∫

ud
dt

d
dt

2σ&

1σ&

Homogeneity-
based 2-sliding  

controller

Homogeneity-
based 2-sliding  

controller

Fig.3. Diagram of the proposed system 
 
 
4 Simulation and Experimentation 
 
4.1 Simulation 
The simulated results can be obtained by the MATLAB 
package. Tab.1 shows the simulation system parameters 
which are from the single-side flat PMLSM shown in 
Fig.1. The stroke length is 800mm. The maximum 
value of the quadrature-axis current permitted is 15A. 
To investigate the effectiveness of the proposed sliding 
mode control system, three simulation cases including a 
parameter variation and load disturbance are considered 
here. The PMLSM is in the condition of nominal 
system parameters without load at Case 1. At Case 2, 
the mass of mover is increased at 3 nM M=  without 
load. At Case 3, with nominal system parameters, a 
sudden load of 5.4kg is added at t=0.4s. The simulation 

results using the proposed scheme are compared with 
those using the field-oriented-control based 
three-closed-loop PID servo system of the PMLSM 
introduced in [12]. By applying the partial model 
matching method, the PID controller parameters can be 
solved as follows, the current loop proportional gain is 

4.5pCK = , the speed loop PID gains are 

25.9,IK = 2.3PK =  and 0.1DK = , the position loop 
proportional gain is 19.2pPK = . For the proposed 
2-sliding controller, controller parameters are selected 
as 1 3100λ = , 2 200,λ = 1 61000α = ， 2 78000α = , 

1 1054q = −  and 2 75.6q = . Moreover, a second-order 
transfer function of the following form with the rise 
time of 0.06s is chosen as the reference model for a step 

command change: 2
6400( )

180 6400
H s

s s
=

+ +
, where s  

is the Laplace operator. The reference value of the 
direct-axis current is set as zero. 

TABLE I  SYSTEM PARAMETERS OF PMLSM 
Primary Winding Resistance 1.23Ω

Direct-Axis Primary 
Inductance 

8.41mH

Quadrature-Axis Primary 
Inductance 

8.41mH

Permanent Magnet Flux 0.55Wb
Mass of the Primary Part 10.6kg 

Polar Pitch 30mm 
Viscous Damping Coefficient 2Ns/m 

    In the simulation, a position step command with 
the 8mm-amplitude is given. The position responses 
and quadrature-axis current at three cases using the PID 
controller and homogeneity-based 2-sliding controller 
are shown in Fig.4 and Fig.5. As the parameters of the 
PID controller depend only on the nominal parameters 
of the drive system, the performance of the servo drive 
system is sensitive to the parameter variations and load 
disturbance in the system. As shown in Fig.4, the 
position tracking response of the square command can 
be satisfying by using a PID controller only at Case 1. 
At Case2, the position overshoot phenomenon appears 
as shown in Fig.4(c) if there is a large parameter 
variation. When a sudden load is added at Case 3, the 
error between the position command and actual position 
is large as shown in Fig.4(e), and the tracking 
performance is unsatisfying. The position tracking 
responses using the proposed sliding mode controller at 
three cases are all satisfying as shown in Figs.5(a), (c) 
and (e). The robustness using the proposed controller is 
obvious compared with the PID controller. Meanwhile, 
it can be observed from the simulated results in 
Figs.4(b), (d) and (f) that there is no chattering in the 
quadrature-axis current by employing the 
homogeneity-based higher-order sliding mode control 
technique. 
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Fig.4. Simulated results using the PID controller (a) position 
response at Case1 (b) quadrature-axis current at Case 1 (c) 
position response at Case 2 (d) quadrature-axis current at Case 2 
(e) position response at Case3 (f) quadrature-axis current at Case3 
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Fig.5. Simulated results using the proposed sliding mode 
controller (a) position response at Case 1 (b) quadrature-axis 
current at Case 1 (c) position response at Case 2 (d) 
quadrature-axis current at Case 2 (e) position response at Case3 (f) 
quadrature-axis urrent at Case3 

 
4.2 Experimentation 
In the experimental studies, a 32-bit fixed-point 
microprocessor TMS320F2812 manufactured by Texas 
Instruments is used which has the advantages of high 

speed (150MIPS), 2 sets (4 channels) of QEP inputs, 2 
sets (12 channels) of PWM outputs and 12 channels of 
12-bit A/D converters (200ns conversion time). The C 
language is used for the control program. The DC link 
voltage value is 190V. The inverter legs are made of six 
insulated gate bipolar transistors (IGBTs). The PWM is 
implemented with a space-vector modulation technique 
with the switching frequency of 20kHz. The sampling 
frequencies of the phase current and position are 10kHz 
and 5kHz, respectively. A Heidenhaim optical encoder 
with the resolution of 0.5 mμ  is equipped in the system 
as a position sensor. The block diagram of the hardware 
system is shown in Fig.6. 
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Fig.6. Block diagram of the hardware system  

 
    As mentioned above, a sudden load is added at 
about t=0.4s at Case 3 in the simulation. However, the 
accurate moment when load is added is difficult to be 
decided as delay exists in the practical operation. In the 
experimentation, a new case of Case 4 is considered. At 
this case, a load of 5.4kg is added at about t=2s, and a 
position step command is given at t=1.7s. A position 
step command with the 8mm-amplitude is given. The 
experimental results of the two controllers at Case 1, 2 
and 4 under the step commands are shown in Fig.7 and 
Fig.8. Though the experimental results are similar to 
the simulated results, the minor difference between 
them is caused by the uncertainties of the real plant. As 
shown in Figs.7(a), (c) and (e), the dynamic 
performance of the PID servo drive system is sensitive 
to the parameter variation and load disturbance. Only 
the position tracking response of the square command 
can be satisfying at Case 1. The improvement of the 
tracking responses at three cases using the proposed 
sliding mode controller is obvious as shown in Figs.8(a), 
(c) and (e). It can also be observed from the 
experimental results in Figs.8(b), (d) and (f) that there 
is no control chattering in the quadrature-axis current 
by employing the homogeneity-based higher-order 
sliding mode control technique. In order to further 
testify the accuracy of the proposed controller, the 
position sinusoidal response at Case 2 is considered. 
The reference sinusoidal position with the 
10mm-amplitude is shown in Fig.9(a). It can be viewed 
in Fig.9(b) that the linear position tracking error does 

Proc. of the 5th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2005 (pp52-60)



 

8

not exceed 12 mμ , which can completely satisfy the 
experimental requirements. Fig.9(d) displays the 
direct-axis current di  which converges to zero. It can 
also be seen from Fig.9(c) that chattering of the 
quadrature-axis current is removed by using the 
proposed controller. 

  
             (a)                        (b) 

  
             (c)                        (d) 

   
(e)                       (f) 

Fig.7. Experimental results using the PID controller under the step 
response (a) position response at Case1 (b) quadrature-axis 
current at Case 1 (c) position response at Case 2 (d) 
quadrature-axis current at Case 2 (e) position response at Case 4 (f) 
quadrature-axis current at Case 4 

    
(a)                         (b) 

   
               (c)                        (d) 

    
                (e)                         (f) 
Fig.8. Experimental results using the proposed controller under the 
step response (a) position response at Case1 (b) quadrature-axis 

current at Case 1 (c) position response at Case 2 (d) 
quadrature-axis current at Case 2 (e) position response at Case 4 (f) 
quadrature-axis current at Case 4 

 
              (a)                       (b) 

 
              (c)                       (d) 

Fig.9. Experimental results of the position sinusoidal response using 
the proposed controller (a) linear position reference (b) position 
tracking error (c) quadrature-axis current (d) direct-axis current 

 
 

5 Conclusion 
In this paper, the homogeneity-based higher-order 
sliding mode control technique is applied to the 
PMLSM control system. The systematic design 
methodology of the homogeneity-based 2-sliding 
controller is discussed. The proposed PMLSM 
position control system shows the satisfactory 
tracking performance of excellent robustness in spite 
of the uncertainties under different position 
commands. Therefore, the validity of the proposed 
control system is confirmed. 
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