
Parameterized Soft IP Core of High Performance ARINC 429 and UART
Interfaces

USMAN YOUSAF, MUHAMMAD ASIF, *IMRAN QADEER

National Engineering and Scientific Commission, *Imagination Technologies
Islamabad, *London
PAKISTAN, *UK

Key-words: - System on chip, Intellectual Proprietary, Universal Asynchronous Receiver Transmitter.

Abstract: - ARINC 429 [1] is a commercial avionics standard for serial communication and the UART [2] is the
most commonly used asynchronous serial communication interface. In existing interface modules read and write
cycle time is high enough that today’s high speed processors have to insert wait states between data read and write
to or from these modules which results in decrease of overall performance of the system. Secondly, in most of the
systems, frame size for data reception and transmission varies with the application, but the interrupt can be
programmed for fixed frame sizes of 8, 16 and 32 words only. The achievement to be presented is the design of a
high speed ARINC 429 module along with a UART, having a high speed processor interface with read and write
cycles much shorter than the existing modules resulting in an improved performance of the system. Secondly, for
varying frame sizes, system’s interrupt can be programmed to interrupt the processor after receiving full frame
which further enhances the performance. Furthermore, the ARINC transceiver is customized for point to point
communication that reduced the complexity of design and hence made it more easy to use. While on the other
side the UART offers a wide range of baud rates covering all the standard ones with programmable interrupt
according to the receive frame size, from one byte to maximum of receive FIFO. This design is tested up to the
clock speed of 24MHz with 16 bytes of transmit and receive FIFO. The hardware testing is performed by
interfacing it with DSP TMS320C32. The soft IP core of the interface is fully parameterized and it can also be
customized according to the application and may be embedded into a complete SoC solution.

1 Introduction
Integration density and performance of integrated
circuits have gone through an astounding revolution
in the last two decades. In 1960s, Gordon Moore,
then with the Fairchild Corporation and later the
confounder of Intel, predicted that the number of
transistors that can be integrated on a single die
would grow exponentially with time. This
prediction, later called Moore’s law, has proven to
be amazingly visionary [3]. From the early 1970s
the microprocessor has grown in performance and
complexity at a steady predictable pace. The
million-transistor chip barrier was crossed in the
late 1980s. Clock frequencies have doubled every
three years in the past decade and have reached into
the GHz range. An important observation is that, as
of now, these trends have not shown any signs of
slowdown.

Fig.1: Block diagram of the interface

In ARINC-429, independent of speed and type of
processor, serial communication can be carried out at a
data rate of 12 – 14.5 or 100 Kbps. While asynchronous
serial communication standards like RS-232 and RS-422
offer even greater data rates up to several Mbps.
However, in the presently available interface modules
for ARINC-429 and UART, parallel interface with the
processor demands large read and write cycle times
forcing today’s high performance processors to insert
wait states in software. In time critical applications this
time can be utilized for other useful computations.
In this research project, parallel interface of the UART
and the ARINC module to the microprocessor has been

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp520-525)

enhanced by decreasing read and write cycle times.
Another useful feature of this interface is that it is
interrupt based and its interrupt is configurable by the
central processing unit, according to the frame size to
be received.
This design basically consists of a UART and an
ARINC module as shown in Fig. 1. Transmit and
receive lines of ARINC-429 and UART coming out
from this interface are fed into the line drivers and
receivers for level translation. A more detailed inside
look shows a controller, FIFOs and an ARINC
transceiver in ARINC module as shown in Fig. 2. On
the other hand the UART has address decoding and
register logic, FIFOs and control circuitry in it as
shown in Fig. 5.
The controller of ARINC module is built around
RISC architecture. ARINC transceiver is designed just
like any other commercial one leaving some of the
features untouched to reduce over head and
unnecessary operational complexity. FIFOs in this
design use DPRAM for storage while a control
circuitry is designed to keep track of the data. Address
decoding and register logic of the UART contains
control registers and their address decoding. Transmit
and receive shift registers are located in the control
unit of the UART.

Fig.2: Block diagram of ARINC module

The interface contains two ARINC 429 receivers and
one transmitter. Everything other than 429 line drivers
and receivers was designed indigenously using
Verilog HDL [4][5], totally independent of
technology. As it is clear from its name that it is a soft
core, anyone can use it in his custom design on FPGA
or ASIC just as a library component without using
separate ICs that’s why it is best suitable for SoC
designs. In this way soft core considerably reduces the
overall cost, area and the hardware in board level
design. The implementation was carried out on
XCS40-3PQ208I FPGA from Xilinx Inc.

2 Arinc-429 Overview
ARINC 429 is a serial communication standard specially
designed for commercial avionics equipment. In this
standard the data is transmitted serially in the form of
thirty two or twenty five bit words. Electronically data is
represented in bipolar return to zero (RZ) format and the
differential voltage levels used for that are +5V and -5V.
Data rates supported by ARINC-429 standard are 12.5 –
14 kbps and 100 kbps.
This standard is preferred in avionics on other serial
communication standards due to intelligence embedded
into it and secure communication that it provides. Using
this standard one transmitter can communicate with up
to twenty receivers without any conflict on the same bus.
Using source/destination identification feature receivers
can check if the data received is meant for it or not. Each
transmitted word has a label with it that enables the
receiver to differentiate between different types of data.
On the other hand differential signaling is more secure in
a noisy environment.

3 Design and Implementation of ARINC
Controller
The operation of ARINC interface is controlled by a
microcontroller that is specifically designed for this sort
of applications where event based control is required. In
this one bit controller multi cycle instruction execution
was employed rather than using typical fixed cycle
instruction execution [6]. Using this technique a lot of
time has been saved because when fixed cycle execution
is used all the instructions take the same time for
execution even if the objective of the instruction has
been achieved in half or even less time. But in multi
cycle execution, each instruction takes as much time as it
needs without wasting time. The controller has an
instruction set of just ten instructions which were chosen
from 8051 microcontroller instruction set but, however,
hardware implementation of these instructions is done in
a different way. Instruction set is described in Table 1
and the block diagram of controller is given in Fig. 3.
The controller has eight bit wide input port and sixteen
bit wide output port all of which are bit addressable. The
software written for specific application is stored into the
ROM inside processor. The ROM size employed in this
design was chosen to be one hundred and twenty eight
bytes as it was enough for this specific application.
However, the size of ROM can be adjusted very easily
as the design is fully parameterized. The software
embedded into the ROM was written in the assembly
language of the controller and then converted into
machine language manually. The 32 byte RAM is being
used as stack memory to store the program counter.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp520-525)

Since ROM size for this design was one hundred and
twenty eight, seven bits were enough for program
counter and hence for RAM locations. As the
architecture is register intensive, there are quite a few
registers in the controller. These registers are
contained inside a register file. All components of the
controller are controlled by a control unit. A Mealy
state machine [7] is used in this design for building
the control unit.

Sr. No. Instruction Meanings

1 Clrb Addr Clear bit at Addr
2 Setb Addr Set bit at Addr
3 Clr Cry Clear carry
4 Set Cry Set carry
5 Ret Return from subroutine
6 Jmp Addr Jump to Addr
7 Jnb Bit,

Addr
Jump to Addr if bit not
set

8 Jb Bit,
Addr

Jump to Addr if bit set

9 Jsr Jump to subroutine
10 Nop No operation

Table 1: Instruction set summary of the controller

Fig.3: Architectural design of controller

4 Design and Implementation of
ARINC Transceiver
The ARINC transceiver implemented in the design is
also customized according to the requirements of the
design leaving some of the features available in
commercial integrated circuits. It reduced the
unnecessary complexities involved in the design.
Block diagram of transceiver is shown in Fig.4.
The control word written for this transceiver is stored
in control register. Through this control word parity,
word size and transmitter and receiver baud rates can
be adjusted. The control unit generates control signals

for other modules after examining this control word. For
the generation of baud rate according to the control
word, a baud rate generator is designed. This baud rate
generator takes the clock coming from outside and then
divides it by an appropriate number for the generation of
required baud rate. The output clock from baud rate
generator is then provided to the transmitter and receiver
circuits separately. Internal operation of the transmitter
and receiver circuits is carried out at a clock rate ten
times faster than the selected baud rate in order to ensure
that no data loss occurs and the skew generation is
minimized. In the transmitter, data sent from the
transmit FIFO is first stored in a data register and then it
is shifted into a shift register from where data is
transmitted bit by bit at the adjusted baud rate. Similarly
in the receiver, data is received bit by bit in a shift
register and when complete word is received, data is
shifted into a data register from where it is sent to
receive FIFO.

Fig.4: Block diagram of ARINC transceiver

Fig.5: Block diagram of UART

5 Address Decoding and Register Logic
of UART
This section generates the control signals for transmit
and receive sections of UART and performs the address
decoding for the UART registers and FIFOs. This block
contains writeable command and baud rate control

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp520-525)

registers and one writeable and readable FIFO size
control register to configure the receiver interrupt.
These registers are designed in such a way that
reading and writing to these registers is very fast. This
block is also responsible for multiplexing on bi-
directional data bus.

6 UART Control Unit
Control unit is the major and important part of the
UART. This section is responsible for handling all the
control functions of the UART. It has many small
portions which are mutually working and designed in
such a way to keep the delay as minimum as possible.
This unit can be partitioned into the following
subsections.

1. Baud generator.
2. Reset controller.
3. Interrupt controller.
4. Transmit shifter.
5. Receive shifter.
6. Data bus controller.
7. Error checker.

Baud generator is responsible for generating all the
baud rates according to the baud word written in the
baud register. It has first stage divisor of 16/3 and
second stage has multiple divisors of 2. Baud register
bits are used as signals to select the required baud rate
from the Baud generator. Baud generator is also
parameterized whose counter and register size can be
changed. It is designed in such a way that it not only
covers all the baud rates available in other UARTs but
also higher ones.

Fig.6: Baud generator

B8 B7 B6 B5 B4 B3 B2 B1

Table 2: Baud register format

Reset controller has reset circuitry which utilizes
external reset and software reset as input to reset the
UART. Both resets initialize the device. Software reset
provides us the flexibility to reset it whenever required
without resetting all the hardware. If internal reset bit of
command register is set it become automatically turn to
zero after resetting the device.
Interrupt controller handles the transmitter and receiver
interrupts of the UART. Both interrupts can be enabled
and disabled independently. Receiver interrupt is
configurable and user can select the limit where he
wants the receiver interrupt. It utilizes the read and write
pointers of receive FIFO and packet register. Interrupt is
active low and duration of that interrupt is equal to the
three crystal clocks.
Transmitter and receiver shifters are same in architecture
but one is used for transmitting and other for receiving
purposes. These are the 11-bit shift registers which shifts
data using transmit and receive clocks from the baud
generator. Transmit register contains start, data, parity
and stop bit. First it transmits start bit then LSB of data
byte and in last stop bit. Receive shifter receive the data
in the same way.
Receiver is designed in such a way that it samples the
serial data in the middle, minimizing chances of error.
Receiver goes in idle state after receiving each frame
and starts receiving data on detection of start bit.
Data bus controller handles the selection of data out at
data bus of the UART core. Error checker checks all the
errors in data communication whether it is parity error,
framing error or overrun error. These errors are checked
as complete frame reaches in the receive shifter. Error
reset is also provided to reset the error bits of the status
when error occurs.

7 FIFO Design and Implementation
FIFO on ARINC module’s transmit side is 16x18 and on
the receive side it is 64x18. While in UART it is 16x8 on
both the sides. Size of the FIFOs can be changed
according to the user requirement.
In ARINC module the complete ARINC word is stored
in two parts as they come from the processor or from
receiver. Along these parts of the word, two extra bits
are stored for sequencing and recognition of the words.
For example, on the transmit side data must be
distinguished as the control word, part one of the word
or part two of the word. Similarly, on the receive side
one FIFO is employed for both the receivers, therefore
some flags are required to distinguish between data from
both the receivers and part one and part two of the words
from separate receivers. These flags stored along with
data are showed up in a separate status register so that

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp520-525)

the central processing unit can recognize the data and
its sequencing by reading the status register.

Fig.7: Block diagram of FIFO

In UART a 16x8 FIFO is on transmit side and another
16x8 FIFO on receive side. FIFO empty and full flags
with transmitter ready and receiver ready flags are
present in the status register of the UART for error
free transmission and reception.
The architectural design of FIFO is shown in Fig. 7.
For the storage of data a dual port RAM is used. Dual
port rams are created using “LogiBlox” module
generator from Xilinx. The reason for using a
DPRAM is to ensure faster operation of FIFO since it
has two ports, read and write operations can occur
simultaneously. Dual Port rams created using this tool
cover minimum chip area as compared to the rams
created using Verilog construct and reading and
writing to these dual port rams are very fast. The
control circuitry consists of read and write pointers
and their comparisons generate FIFO full and empty
flags and prevent it from overwriting. All FIFOs are
parameterized and their sizes can be customized
according to user requirement.

8 Configurable Interrupt
There are two separate registers in ARINC module
and UART to determine the frame size. Central
processing unit writes these register to describe the
frame length, otherwise, the interface would use the
default frame length of one for ARINC module and
eight for UART. However, like all other features this
can also be customized according to the application.
The frame size is basically used in reception, the
number of words stored in FIFO are compared with
this register and when number of words in FIFO
equals the stored value an interrupt is sent to the
central processing unit to indicate that complete frame
is received and it can read its data now. This feature is
very useful because using this, the central processing

unit needs not to poll the status of FIFO again and again,
and hence time is saved.

9 Verification and Testing
The design entry tool used is HDL Designer while
simulation was carried out using Modelsim. For the
purpose of testing first the functional simulation was
carried out for each individual design unit after that all
the design units were integrated and integrated
functional simulation was performed.
After functional simulation the design was synthesized
using Leonardo spectrum level-3 for XCS40-3PQ208I.
Leonardo Spectrum generated an EDIF file for the
design. This file was used as an input to the Xilinx
foundation series for place, route and implementation of
the design on the device stated earlier. It generated a
device downloadable bit file along with a gate level
Verilog file and SDF file that contains the delay
information of the technology dependent modules used
in that gate level Verilog code. With the help of these
files post layout timing simulation was performed.
After the design was fully verified in timing simulation,
the design was tested in hardware. The bit file generated
by Xilinx ISE was downloaded into an EEPROM from
where it is uploaded in the FPGA every time it powers
up. The UART was independently tested with a PIC
microcontroller based testing jig. The data written by
PIC16F877 to the UART in parallel was transmitted
serially. This serial data was received in PC and the
same data was transmitted back to the UART. Then this
data was read by the controller and compared with the
original data.
For integrated testing of all the modules, Texas
Instrument’s TMS320C32 digital signal processor (DSP)
based kit was used. The software for the DSP was
written in C [8] programming language using Code
Composer Studio. The data written from the DSP
emulator in parallel was transmitted in ARINC-429
standard from the interface. This data was received in a
standard ISA based ARINC card by DDC corporation.
From there the same data was sent back to the interface
on both the receiving channels. These receivers received
the data, stored it into FIFO and after receiving the
required number of words interrupted the DSP. The data
written to the UART was serially transmitted on RS-232.
It was received in a PC and from there the same data
was transmitted back to the UART receiver which stored
this data in receive FIFO. After receiving the complete
packet an interrupt was sent to the DSP. On receiving
interrupt, the DSP read the data stored in the receive
FIFO and compared it with the original data. In this way
the functionality of the interface was fully tested.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp520-525)

10 Conclusion
The performance of this interface proved that it can
serve the purpose it was designed for. It can survive
the day by day increasing demand for speed alongside
ensuring a safe communication. Its performance, if
compared with commercially available ARINC-429
interfaces proves that it is almost three hundred and
thirteen percent (313%) faster. This is shown in Fig.8
clearly in a comparison between times taken by read
cycles in both the interfaces. Normally the
commercially available interfaces take round about
470ns for one read cycle while this interface takes just
150 ns at the most. It can be even lesser than this if an
FPGA with improved speed grade is used.
In addition to it the interface also contains the UART.
The parallel interface of the UART is also enhanced
in terms of read and write cycles. UART core is 60%
faster than commercially available UART. Fig. 9
undoubtedly shows the comparison between both
UARTS. Commercial UART takes almost 100ns of
time for its cycles while UART core takes 40ns for its
read and write cycle. Same is the case for read cycles
of UART core. This time can be further reduced by
increasing the clock speed or by using an improved
speed grade FPGA.
These figures are fully tested and verified according
to the procedure described under the heading of
“Verification and Testing”.

Fig.8: A comparison between the times taken by the
read cycles in both the ARINC interfaces

Fig.9: A comparison between the time taken by the write
cycles of both the UARTs

References:
[1] www.aims-online.com
[2] www.beyondlogic.org/serial.pdf
[3] Jan M. Rabaey, Anantha Chandrakasan, Brivoje
 Nikloic, Digital Integrated Circuits: A Design
 Perspective, Prentice Hall, 2003.
[4] Samir Palnitkar, Verilog HDL: A Guide to Digital
 Design and Synthesis, Prentice Hall, 2000.
[5] Zainalabedin Navabi, Verilog Digital System
 Design, McGraw-Hill Inc, USA, 1999.
[6] David A. Patterson, John L. Hennessy, Computer
 Organization & Design: A Hardware/Software
 Interface, Morgan Kaufmann Publishers Inc., 2000.
[7] John F Wakerly, Digital Design Principles and
 Practices, Prentice Hall, Third Edition, 2000.
[8] Robert Lafore, The Wait Group’s Turbo C
 Programming for PC and Turbo C++, SAMS,
 Third Edition, 1999.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp520-525)

