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Abstract: - Several methods have been proposed for synthesizing computer communication protocol 
specifications from service specifications. In real time applications, the time required to execute the events can 
be crucial and has to be considered. Some of the protocol synthesis methods do not consider timing constraints 
and, therefore, cannot be used in real time applications. In this paper, the assignment of the timing constraints 
to the service specification is discussed. In addition, an automatic method for synthesizing protocol 
specifications is extended to consider timing constraints given in the service specification. Both the service 
and protocol specifications are modeled using Timed Finite State Machines (TFSMs). The resulting 
synthesized protocol is guaranteed to conform to the timing constraints given in the service specification. 
 
Key-Words: - protocol synthesis, protocol specification, service specification, timing constraints, TFSM. 
 
1   Introduction 
A protocol can be defined as an agreement on the 
exchange of information between communicating 
entities. A full protocol definition defines a precise 
format for valid messages (a syntax), procedure 
rules for the data exchange (a grammar), and a 
vocabulary of valid messages that can be exchanged, 
with the meaning (semantics). 

In protocol design, interacting entities are 
constructed to provide a set of specified services to 
the service users. While designing a communication 
protocol, semantic and syntactic errors may exit. 
Semantic design errors cause the provision of 
incorrect services to the distributed protocol users. 
Syntactic design errors cause the protocol to 
deadlock.  

A communication system is most conveniently 
structured in layers. The Service Access Point (SAP) 
is the only place where a layer can communicate 
with its surrounding layers or service users. The 
layer can have several SAPs. The communication 
between the layer and its surrounding is performed 
using Service Primitives (SPs). The SP identifies the 
type of event and the SAP at which it occurs.  

From user’s viewpoint (high level of abstraction), 
the layer is a black box where only interactions, 
identified by the SPs, with the user are visible. The 
specification of the service provided by the layer is 
defined by the ordering of the visible SPs and the 
timing requirements between the SP occurrences. 
This specification is called Service Specification (S-

SPEC). At a refined level of abstraction, the service 
provided by the layer is performed using a number 
of cooperating protocol entities. These protocol 
entities exchange protocol messages through a 
communication medium. The protocol specification 
(P-SPEC) prescribes the exchange of messages 
between the protocol entities. Figure 1 shows the 
two abstraction levels of a communication layer. 
Both S-SPEC and P-SPEC can be modeled using 
Communicating Finite State Machines (CFSMs). 
 

 
Figure 1. The communication service and protocol 

concepts 
 

Protocol specifications are much complex than 
service specifications because of their refined nature. 
Therefore, it is quite natural to start the protocol 
design process from a complete and unambiguous 
service specification. The construction of a protocol 
specification from a given service specification is 
called a protocol synthesis. Protocol synthesis is 
relatively an easy and time-saving task. That is, 
instead of applying a sequence of design, analysis, 
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error detection and correction iteratively until the 
design becomes error-free, protocol synthesis 
approach does not require any further validation. 
The synthesis approach is used to construct or 
complete a partially specified protocol design such 
that the interactions between the constructed or 
completed protocol entities proceed without 
encountering any logical error and ideally provide 
the specified service. In addition, the syntactic 
correctness of the synthesized protocol is often a 
direct byproduct of the synthesis method [1]. Several 
protocol synthesis methods have appeared in the 
literature such as [2,3,4,5,6,7,8,9,10,11]. Most of 
these methods do not consider the timing 
requirements given in the service specification and, 
therefore, cannot be used for real time applications.  

Saleh and Probert [2] have proposed an automatic 
synthesis method of CFSM-modeled protocol 
specification starting from the service specification 
without considering the timing constraints. In this 
paper, the assignment of the timing constraints to the 
service specification is discussed. In addition, Saleh 
and Propert method is extended to synthesize 
protocol specifications from service specifications 
containing timing requirements. The resulting 
protocol specification is proved to conform to the 
timing constraints provided in the service 
specification. 

The paper is organized as follows. In Section 2, 
the model used for the service and protocol 
specifications is defined. The related research is 
overviewed in Section 3. In Section 4 the service 
specification time assignment is discussed and the 
timed protocol synthesis method and a small 
example are introduced. The correctness of the 
synthesis method is proved in Section 5. Finally, 
Section 6 provides conclusions and discussion of 
future work. 
 
 
2   Model Definition 
In this paper, both the service and protocol 
specifications are modeled using Finite State 
Machines (FSMs). In general, FSMs consist of states 
and transitions. In this paper, the FSM is extended 
by associating time constraints with the transitions. 
The extended model is called Timed Finite State 
Machine (TFSM). In this section, the TFSM is 
formally defined for the specification of the services 
and protocols in the context of the layered 
communication system introduced in Section 1.  
 
 
 

2.1 Service specification model 
The service specification described in TFSM defines 
sequences of primitives exchanged between users 
and processes through the service access points.  
 
Definition 1: A service specification S-SPEC is 
modeled by a TFSM denoted by a tuple (Ss,Ts,σ) 
where: 
1. Ss is a non-empty finite set of service states. 
2. Ts is a finite set of transitions such that each 
transition t∈Ts is a 4-tuple <head(t), tail(t), SP, 
[mint,maxt]> where: 
a. head(t) and tail(t) are respectively the head and 
the tail states of t. 
b. SP is the service primitive that defines the service 
event, its type, and the index of the SAP through 
which the SP passes. There are two types of service 
events ↑ and ↓. An SP of type ↑ is an SP directed 
upward from the protocol entity to the SAP. The SP 
of type ↓ is an SP directed downward from the 
service user at a SAP to a protocol entity. 
c. [mint,maxt] is the time interval associated with t 
such that the transition t can be executed only within 
the time T since head(t) is visited, where 
mint≤T≤maxt. 
3. σ ∈ Ss is the initial service state. 

Figure 2 shows a S-SPEC example. In this 
example, Ss={s1, s2, s3, s4}, Ts= 
{<s1,s2,A1↓,[1,3]>, <s2,s3, B2↓,[1,4]>, 
<s2,s4,C3↓,[2,3]>, <s3,s4,D1↓,[1,2]>, 
<s4,s1,E2↓,[1,2]>}, and σ={s1}. 
 

 
Figure 2. A service specification example 

 
Definition 2: A projected service specification PS-
SPECi is the projection of the S-SPEC onto SAPi. 
The PS-SPECi is modeled by a TFSM denoted by a 
tuple (Ss’,Ts’,σ’) where: 
1. Ss’ = Ss 
2. Ts’ = {<head(t), tail(t), SP, [mint,maxt]>| t∈Ts and 
SAP(SP)=i}∪ {<head(t), tail(t), ε, ε >| t∈Ts and 
SAP(SP)≠ i} 
3. σ’ = σ 
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Figure 3 shows the projected service 
specifications for the S-SPEC given in Figure 2. In 
PS-SPEC1, Ss’={s1, s2, s3, s4}, Ts’= 
{<s1,s2,A↓,[1,3]>, <s2,s3, ε,ε>, <s2,s4,ε,ε>, 
<s3,s4,D↓,[1,2]>, <s4,s1,ε,ε>}, and σ={s1}. 
 
 
2.2 Protocol specification model 
The protocol specification consists of the 
specifications of the protocol entities that cooperate 
to provide the service described in the service 
specification.  
 
Definition 3: The protocol entity specification PE-
SPECi is also modeled by a TFSM denoted by a 
tuple (Spi,Tpi,σpi) where: 
1. Spi is a non-empty finite set of states of protocol 
entity i. 
2. Tpi is a finite set of transitions such that each 
transition t∈Tpi is a 4-tuple <head(t), tail(t), Ei, 
[mint,maxt]> where: 
a. head(t) and tail(t) are respectively the head and 
the tail states of t. 
b. Ei is a protocol event that can be either (1) an SP 
that passes through SAPi, (2) an event message E 
sent from PEi denoted by !ei, or (3) an event 
message E received by PEi denoted by ?ei.      
c. [mint,maxt] is the time interval associated with t 
such that the transition t can be executed only within 
the time T since head(t) is visited, where 
mint≤T≤maxt. The time interval is associated with 
only the transition that has the first type of Ei. The 
time required for sending an event from PEi and 
receiving the event by PEj (i.e., protocol events of 
Types 2 and 3) is controlled by the delay of the 
channel between the two protocol entities. This 
delay is considered -as will be illustrated in Section 
4- when computing the time interval for the SP (i.e., 
the protocol event of Type 1). Therefore, no time 
interval is associated with transitions that have 
events of Types 2 and 3.  
3. σpi ∈ Spi is the initial protocol state. 

Figure 5 shows three PE-SPEC examples. For 
PE-SPEC1, Spi={s1, s2, s3}, Tpi= {<s1,s2,A/!a2,3, 
[1,2.8]>,  <s2,s3,?b1,ε>, <s3,s2,D/!d2,[1,1.9]>, <s2, 
s1,?e2,ε>}, and σpi={s1}. In this work, we assume 
that the communication medium between the 
protocol entities is reliable and the messages are 
delivered in the first-in-first-out (FIFO) order. Each 
channel between two protocol entities PEi and PEj 
has a delay dij such that min(dij)≤dij≤max(dij), where 
min(dij) and max(dij) are respectively the minimum 
and maximum delay of the channel from PEi to PEj. 
   

3 Related Research      
In this section, an overview of other related research 
is provided and the basic service-oriented synthesis 
method introduced in [2] is briefly described.  
 
 
3.1. Other Related Research 
Two approaches are used in designing 
communication protocols: analysis and synthesis. In 
the analysis approach, a sequence of design, 
analysis, error detection and correction is applied 
iteratively to produce error-free design. In the 
synthesis approach, the protocol design is 
constructed or completed in such a way that no 
further validation is needed. Some protocol synthesis 
methods start the derivation process from a complete 
service specification [2,3,4,5,6,7,8,9,10,11,12] and 
others do not [13,14]. The protocol synthesis 
methods can be further classified according to the 
used models. The used models include finite state 
machines [2,4,9,10], Petri-nets [5,11,12], and 
LOTOS-like [3,6,7,8].  

Some of the service-oriented protocol synthesis 
methods consider the timing requirements given in 
the service specification [7,8,9,11] and others do not 
[2,3,4,5,6,10]. The method of dealing with timing 
constraints provided in the service specifications in 
[7,8, and 11] cannot be directly applied in this paper 
because a different model is used (i.e., Petri-nets and 
LOTOS-like models). In [8], the channel delay is 
assumed negligible while in [7], the minimum 
channel delay is assumed to be always zero. In [9], 
the timing constraints provided in the service 
specifications that have concurrency behavior are 
considered. The paper assumes that only the upper 
bound of delay for each channel is given and the 
lower bound is assumed to be always zero as in [7]. 
In this paper, the timing constraints provided in the 
service specifications that have sequential behavior 
are considered and the lower bound of the channels 
is generalized to be any nonnegative value.       
 
 
3.2. The Basic Synthesis Method 
The synthesis method introduced in [2] uses FSM to 
model both service and protocol specifications. The 
models are similar to the models introduced in 
Section 2 except for the time interval associated with 
the transitions. The timing constraints are not 
considered in the basic synthesis method.  

To synthesize the protocol specification from the 
service specification, three steps are followed. 
1. Project the service specification S-SPEC onto 
each SAP to obtain the PS-SPECs defined in 
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Definition 2. 
2. Apply the transition synthesis rules to each 
transition in the PS-SPECs to obtain the PE-SPECs. 
The transition synthesis rules are the same as the 
rules given in Table 1 but with no time intervals. 
3. Remove ε-cycles and ε-transitions by using 
algorithms described in [15] to obtain the reduced 
PE-SPECs.      

Ignoring the time intervals given in Figures 2, 3, 
4, and 5, Figures 3, 4, and 5 show the PS-SPECs, 
PE-SPECs, and reduced PE-SPECs after applying 
Steps 1, 2, and 3, respectively, for the S-SPEC given 
in Figure 2. 
 
 
4 Timed Protocol Synthesis Method 
To synthesize timed protocol specifications, the 
service specification has to be provided with time 
constraints associated with the transitions of the 
TFSM. In this section, the time assignment to the S-
SPEC transitions is discussed and the synthesis 
method for the timed protocol specification is 
introduced. Finally, a small example is illustrated. 
 
 
4.1 Service specification time assignment 

The assignment of the service specification time 
constraints is performed during the S-SPEC design 
process. These time constraints are assigned as time 
intervals associated with the transitions of the TFSM 
that models the S-SPEC. The time interval 
[mint,maxt] means that the transition t can be 
executed only within the time T since the source 
state of t is visited, where mint,≤T≤maxt. The time T 
includes the waiting time Tw since the source state is 
visited. If the SP associated with the transition is to 
be sent from one Protocol Entity (PE) to another, the 
time T includes also the time required for sending 
the SP from the source PE and receiving the SP by 
the destination PE. The time for sending and 
receiving an SP from PEi to PEj is the delay dij of the 
channel between the two PEs. Therefore, 
mint=min(Tw)+min(dij) and, consequently, mint has 
to be greater than or equal to min(dij). Similarly, 
maxt=max(Tw)+max(dij) and, consequently, maxt has 
to be greater than or equal to max(dij). In addition, 
the mint and maxt have to be assigned such that 
max(Tw)≥min(Tw). In other words, maxt-max(dij)≥ 
mint-min(dij). Thus, maxt≥mint+(max(dij)-min(dij)).    
In some cases, an SP associated with a transition can 
be sent to more than one PE (e.g., in Figure 2, A1 is 
sent to PE2 and PE3). Let X be a set of the protocol 
entities that can receive the SP. Generally, if an SP 
associated with a transition t can be sent from PEi to 

more than one PE such that each PE∈X, the time 
interval associated with t has to be assigned such 
that ∀j∈X, mint≥min(dij) and maxt≥max(dij).This 
means that mint≥maximum∀j∈X(min(dij)) and 
maxt≥maximum∀j∈X (max(dij)). Similarly, ∀j∈X, 
maxt≥mint+(max(dij)-min(dij)). This means that 
maxt≥mint+maximum∀j∈X(max(dij)-min(dij)).    

For example, in Figure 2, the service primitive A1 
is sent to PE2 and PE3. You can notice that the 
conditions maxt≥maximum(max(d12),max(d13)) (i.e., 
3>maximum(0.1,0.2)), mint≥maximum(min(d12), 
min(d13)) (i.e., 1>maximum(0,0.1)), and maxt≥mint+ 
maximum((max(d12)-min(d12)),(max(d13)-min(d13))) 
(i.e., 3>1+maximum((0.1-0),(0.2-0.1)) are satisfied.    
 
 
4.2. Synthesis of timed protocol specifications 
An automatic synthesis method for the protocol 
entities from a service specification is introduced in 
[2] and summarized in Section 3. In this section, the 
synthesis method is extended to consider the timing 
constraints provided in the service specification. 

To consider the timing constraints, the first two 
steps of the basic method are extended. Then the 
third step is applied as-is.  
 
Step 1 Extension 
In this first step of the basic synthesis method, the 
service specification S-SPEC is projected onto each 
SAP to obtain the PS-SPECs. The PS-SPEC 
obtained by the projection of the S-SPEC onto SAPi 
includes the same states and transitions of the S-
SPEC. The only difference is in the labels of the 
transitions associated with the events that do not 
pass through SAPi. These events are substituted by 
ε-events. In the basic synthesis method, the 
transitions of the PS-SPECs are not associated with 
time intervals because the S-SPEC does not include 
them. In the extended synthesis method, the 
transitions of the PS-SPECs are associated with the 
same time intervals associated with the transitions of 
the S-SPEC. The PS-SPEC transitions associated 
with ε-events are not assigned to time intervals. 
Figure 3 shows the PS-SPECs derived from the S-
SPEC given in Figure 2. 
 
Step 2 Extension 
In the second step of the basic synthesis method, a 
set of transition rules are applied to each transition (ε 
or SP-labeled) in the SP-SPECs to obtain the 
protocol entities. In the extended synthesis method, 
these rules are extended to consider the time 
intervals associated with the transitions of the PS-
SPEC. The extended rules and the conditions for 
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their applications are summarized in Table 1. In this 
table, OUT(s) means the SAPs at which the events 
associated with the outgoing transitions from state S 
pass through. For example, in Figure 2, 
OUT(s2)={2,3} because the service primitive B 
passes through SAP2 and the service primitive C 
passes through SAP3. The intuition for these 
extensions are given below. 
 
a. Transition labeled by an SP in PS-SPECi: 
Rule a.1: This rule implies that the flow of control 
needs not be transferred to another protocol entity or 
service user. Therefore, no channel delays are to be 
considered. In this case, the same time interval is 
considered without changing. 
Rule a.2: In this case, the transition is taking back 
the service to its initial state and, therefore, a 
synchronization message is sent to all other PEs. 
Thus, the channel delays between the PEi and all 
other PEs have to be considered. In this case, the 
maximum and the minimum channel delays among 
the considered ones are respectively subtracted from 
maxt and mint of the transition to obtain the new 
maxt and mint values.   
Rule a.3: In this case, the SP is sent to a service user 
not to another PE. Therefore, no channel delays are 
to be considered. In this case, the same time interval 
is considered without changing. 
Rule a.4: In this case, the SP is originating from the 
service user at SAPi. After the occurrence of this SP, 
other SPs are observed at other SAPs. A 
synchronization message is sent from PEi to the 
other corresponding PEs. Therefore, the channel 
delays between the PEi and the other corresponding 
PEs have to be considered as illustrated in Rule a.2. 
Rule a.5: The intuition of this rule is similar to Rule 
a.3. 
 

 
Table 1. Summary of the transition synthesis rules 

and the conditions for their application 
 

b. Corresponding transition labeled by ε  in 
another PS-SPEC 
The transition associated with ε-event is either 
remains the same (Rules b.1, b.3, and b.5) or is 
associated with a receiving message for the 
synchronization message sent by PEi. The transition 
associated with an ε-event is not assigned a time 
interval and, therefore, no timing constraints are to 
be considered. In addition, The transition associated 
with a receiving message is not assigned a time 
interval because the time required to execute this 
transition is part of the channel delay already 
considered in Rules a.2 and a.4.   
 
 
4.3 Example 
Figure 2 shows a S-SPEC example. Figure 3 shows 
the three PS-SPECs obtained by applying Step 1 of 
the extended synthesis method. Finally, Figures 4 
and 5 show the three PE-SPECs resulting from 
applying Steps 2 and 3 of the extended and basic 
synthesis methods, respectively. In PE1, the 
transition associated with the service primitive A has 
the time interval [1-min(min(d12),min(d13)),3-max 
(max(d12),max(d13))] and the transition associated 
with the service primitive D has the time interval [1-
min(d12),2-max(d12)]. In PE2, the transition 
associated with the service primitive E has the time 
interval [1-min(min(d21),min(d23)),2-max(max(d21), 
max(d23))] and the transition associated with the 
service primitive B has the time interval [1-min(d21) 
,4-max(d21)]. Finally, In PE3, the transition 
associated with the service primitive C has the time 
interval [2-min(d32),3-max(d32)].    
 
 
5  Proof of correctness 
Proving the correctness of the synthesis method 
requires proving that the synthesis method is 
syntactically and semantically correct. This proof is 
provided in [2] but without timing constraints. 
Therefore, to complete the proof, we prove here that 
the time assignments to the transitions of the PEs as 
a result of applying the extended synthesis method 
conform to the time constraints assigned to the 
transitions of the S-SPEC. 
 
Lemma 1. In the PEs, the time T required for 
executing an SP is mintp≤T≤maxtp such that the time 
interval [mint,maxt] is associated with the 
corresponding transition in the S-SPEC and mint≤ 
mintp≤T≤maxtp≤maxt. 
Proof: An SP executed in a PE is either (1) not sent 
to another PE (Rule a.1), (2) sent to a service user 
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(Rules a.3 and a.5), or (3) sent to one or more other 
PEs (Rules a.2 and a.4). In the first two cases, the SP 
is not sent to another PE and, therefore, no channel 
delays are to be considered. As a result, in these two 
cases, the time required to execute the SP in the PE 
is the same as the time associated with the 
corresponding transition in the S-SPEC (i.e., (mint= 
mintp)≤T≤(maxtp=maxt)). 
 

 
Figure 3. The PS-SPECs obtained by applying   

Step 1 of the extended synthesis method. 
 

 
Figure 4.  The PE-SPECs obtained by applying  

Step 2 of the extended synthesis method. 
 

 
Figure 5.  The PE-SPECs obtained by applying  

Step 3 of the basic synthesis method. 
 

For the third case, the SP is either sent to another 
PE or sent to more than one other PEs. If the SP is 
sent to another PE, the time required to execute the 
SP in the PE is the waiting time since the source 
state is visited and the channel delay dij. The waiting 
time is the time associated with the PE transition 
labeled by SP. As given in Rule a.2, this time is T 
such that mint-min(dij)≤T≤maxt-max(dij). As a result, 

the time required to execute the SP in the PE (i.e., 
waiting time + channel delay) is T such that mint-
min(dij)+dij≤T≤maxt-max(dij)+dij. This means that 
mintp= mint-min(dij)+dij and maxtp= maxt-max(dij)+ 
dij. Since mint-min(dij)+dij and  min(dij)≤dij, then 
mint-min(dij)+min(dij)≤mint-min(dij)+dij≤T. As a 
result, mint≤mintp≤T. Similarly, since T≤maxt-
max(dij)+dij and dij ≤ max(dij) then T≤maxt-max(dij)+ 
dij≤maxt-max(dij)+max(dij). Therefore, T≤maxtp≤ 
maxt. As a result, in this case, in the PEs, the time T 
required for executing an SP is T such that mint≤ 
mintp≤T≤maxtp≤maxt.  

The last case is when the SP is sent from one PE 
to more than one other PEs. In this case, the waiting 
time associated with the transition labeled by SP, as 
given in Rule a.2, is T such that mint- 
minimum∀j∈X(min(dij))≤T≤maxt - maximum∀j∈X(max 
(dij)) where X is the set of the protocol entities that 
can receive the SP. When considering the channel 
delays, the minimum time T required to execute the 
SP is calculated such that mint-minimum∀j∈X(min 
(dij))+minimum∀j∈X(dij)≤T. Since minimum∀j∈X (min 
(dij))≤minimum∀j∈X (dij), then mint-minimum∀j∈X 

(min(dij))+minimum∀j∈X(min(dij))≤ mint-minimum 
∀j∈X(min(dij))+minimum∀j∈X(dij)≤T. As a result, mint 

≤mintp≤T. Similarly, the maximum time T required 
to execute the SP is calculated such that T≤ maxt-
maximum∀j∈X(max(dij))+maximum∀j∈X(dij). Since 
maximum∀j∈X (dij)≤maximum∀j∈X (max(dij)), then 
T≤ maxt-maximum∀j∈X(max(dij))+maximum∀j∈X(dij) 
≤ maxt-maximum∀j∈X(max(dij))+maximum∀j∈X(max 
(dij)). Therefore, T≤maxtp≤maxt. As a result, in this 
final case, in the PEs, the time T required for 
executing an SP is T such that mint≤ mintp≤ 
T≤maxtp≤maxt. 

As a result, for all cases, in the PEs, the time T 
required for executing an SP is mintp≤T≤maxtp such 
that the time interval [mint,maxt] is associated with 
the corresponding transition in the S-SPEC and 
mint≤ mintp≤T≤maxtp≤maxt. ■            
 
Lemma 2. For any sequence of SPs in the S-SPEC 
executed during the time interval [mint,maxt], the 
corresponding SPs in the PEs are executed within 
the same or narrowed time interval.       
Proof: The execution of sequence of n SPs in the S-
SPEC is performed during the time interval 
[mint,maxt] such that mint =  mint(SP1)+ mint(SP2)+ 
….+ mint(SPn) and maxt =  maxt(SP1)+ maxt(SP2)+ 
….+ maxt(SPn). By Lemma 1, for any SP,  mint(SP) 
in the PE-SPEC is greater than or equal to the 
mint(SP) in the S-SPEC and maxt(SP) in the PE-
SPEC is less than or equal to the maxt(SP) in the S-
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SPEC. Therefore, the execution of the sequence of n 
SPs in the PE-SPECs is performed within the same 
or narrowed time interval [mint,maxt]. ■ 
 
Lemma 3. The time constraints assigned to the 
transitions of the PEs as a result of applying the 
extended synthesis method conform to the time 
constraints assigned to the transitions of the S-
SPEC.   
Proof: As a result of assigning time intervals to the 
transitions of the PEs using the extended synthesis 
method, the execution of any sequence of SPs in the 
PEs is performed during the same or narrowed time 
intervals given in the S-SPEC (Lemma 2). 
Therefore, the time constraints assigned to the 
transitions of the PEs as a result of applying the 
extended synthesis method conform to the time 
constraints assigned to the transitions of the S-
SPEC. ■ 
 
 
6. Conclusions and Future Work 
In this paper, a synthesis method for protocol 
specifications from service specifications is 
extended such that the timing constraints provided in 
the service specification are considered in the 
resulting protocol specifications. This extension 
makes the synthesis method applicable for real time 
applications. The extension uses the TFSM for 
modeling both the service and protocol 
specifications. In this paper, the assignment of the 
timing constraints to the service specification is 
discussed. In addition, it is shown how to map the 
timing constraints associated with the transitions of 
the service specification model to the transitions of 
the protocol specification models. The maximum 
and minimum delays of the channels between the 
protocol entities are considered in this paper when 
mapping the timing constraints. Finally, the 
introduced extension is proved to be correct in terms 
of the conformation of the timing constraints 
computed for the protocol specifications to the 
timing constraints provided in the service 
specification.  

The basic synthesis method extended in this paper is 
limited to the service specifications that have sequential 
behavior (i.e., only one service primitive can be executed 
at once). In future, we plan to extend the basic synthesis 
method to handle possible concurrent occurrence of 
service primitives in the service specifications. In 
addition, we intend to study the affect of the concurrent 
behavior of the service specification on the assignment of 
the time constraints to the service and protocol 
specifications.      
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