
Automatic Synthesis of Timed Protocol Specifications from Service
Specifications

JEHAD AL DALLAL

Department of Information Sciences
Kuwait University

P.O. Box 5969, Safat 13060
KUWAIT

Abstract: - Several methods have been proposed for synthesizing computer communication protocol
specifications from service specifications. In real time applications, the time required to execute the events can
be crucial and has to be considered. Some of the protocol synthesis methods do not consider timing constraints
and, therefore, cannot be used in real time applications. In this paper, the assignment of the timing constraints
to the service specification is discussed. In addition, an automatic method for synthesizing protocol
specifications is extended to consider timing constraints given in the service specification. Both the service
and protocol specifications are modeled using Timed Finite State Machines (TFSMs). The resulting
synthesized protocol is guaranteed to conform to the timing constraints given in the service specification.

Key-Words: - protocol synthesis, protocol specification, service specification, timing constraints, TFSM.

1 Introduction
A protocol can be defined as an agreement on the
exchange of information between communicating
entities. A full protocol definition defines a precise
format for valid messages (a syntax), procedure
rules for the data exchange (a grammar), and a
vocabulary of valid messages that can be exchanged,
with the meaning (semantics).

In protocol design, interacting entities are
constructed to provide a set of specified services to
the service users. While designing a communication
protocol, semantic and syntactic errors may exit.
Semantic design errors cause the provision of
incorrect services to the distributed protocol users.
Syntactic design errors cause the protocol to
deadlock.

A communication system is most conveniently
structured in layers. The Service Access Point (SAP)
is the only place where a layer can communicate
with its surrounding layers or service users. The
layer can have several SAPs. The communication
between the layer and its surrounding is performed
using Service Primitives (SPs). The SP identifies the
type of event and the SAP at which it occurs.

From user’s viewpoint (high level of abstraction),
the layer is a black box where only interactions,
identified by the SPs, with the user are visible. The
specification of the service provided by the layer is
defined by the ordering of the visible SPs and the
timing requirements between the SP occurrences.
This specification is called Service Specification (S-

SPEC). At a refined level of abstraction, the service
provided by the layer is performed using a number
of cooperating protocol entities. These protocol
entities exchange protocol messages through a
communication medium. The protocol specification
(P-SPEC) prescribes the exchange of messages
between the protocol entities. Figure 1 shows the
two abstraction levels of a communication layer.
Both S-SPEC and P-SPEC can be modeled using
Communicating Finite State Machines (CFSMs).

Figure 1. The communication service and protocol

concepts

Protocol specifications are much complex than
service specifications because of their refined nature.
Therefore, it is quite natural to start the protocol
design process from a complete and unambiguous
service specification. The construction of a protocol
specification from a given service specification is
called a protocol synthesis. Protocol synthesis is
relatively an easy and time-saving task. That is,
instead of applying a sequence of design, analysis,

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp410-417)

error detection and correction iteratively until the
design becomes error-free, protocol synthesis
approach does not require any further validation.
The synthesis approach is used to construct or
complete a partially specified protocol design such
that the interactions between the constructed or
completed protocol entities proceed without
encountering any logical error and ideally provide
the specified service. In addition, the syntactic
correctness of the synthesized protocol is often a
direct byproduct of the synthesis method [1]. Several
protocol synthesis methods have appeared in the
literature such as [2,3,4,5,6,7,8,9,10,11]. Most of
these methods do not consider the timing
requirements given in the service specification and,
therefore, cannot be used for real time applications.

Saleh and Probert [2] have proposed an automatic
synthesis method of CFSM-modeled protocol
specification starting from the service specification
without considering the timing constraints. In this
paper, the assignment of the timing constraints to the
service specification is discussed. In addition, Saleh
and Propert method is extended to synthesize
protocol specifications from service specifications
containing timing requirements. The resulting
protocol specification is proved to conform to the
timing constraints provided in the service
specification.

The paper is organized as follows. In Section 2,
the model used for the service and protocol
specifications is defined. The related research is
overviewed in Section 3. In Section 4 the service
specification time assignment is discussed and the
timed protocol synthesis method and a small
example are introduced. The correctness of the
synthesis method is proved in Section 5. Finally,
Section 6 provides conclusions and discussion of
future work.

2 Model Definition
In this paper, both the service and protocol
specifications are modeled using Finite State
Machines (FSMs). In general, FSMs consist of states
and transitions. In this paper, the FSM is extended
by associating time constraints with the transitions.
The extended model is called Timed Finite State
Machine (TFSM). In this section, the TFSM is
formally defined for the specification of the services
and protocols in the context of the layered
communication system introduced in Section 1.

2.1 Service specification model
The service specification described in TFSM defines
sequences of primitives exchanged between users
and processes through the service access points.

Definition 1: A service specification S-SPEC is
modeled by a TFSM denoted by a tuple (Ss,Ts,σ)
where:
1. Ss is a non-empty finite set of service states.
2. Ts is a finite set of transitions such that each
transition t∈Ts is a 4-tuple <head(t), tail(t), SP,
[mint,maxt]> where:
a. head(t) and tail(t) are respectively the head and
the tail states of t.
b. SP is the service primitive that defines the service
event, its type, and the index of the SAP through
which the SP passes. There are two types of service
events ↑ and ↓. An SP of type ↑ is an SP directed
upward from the protocol entity to the SAP. The SP
of type ↓ is an SP directed downward from the
service user at a SAP to a protocol entity.
c. [mint,maxt] is the time interval associated with t
such that the transition t can be executed only within
the time T since head(t) is visited, where
mint≤T≤maxt.
3. σ ∈ Ss is the initial service state.

Figure 2 shows a S-SPEC example. In this
example, Ss={s1, s2, s3, s4}, Ts=
{<s1,s2,A1↓,[1,3]>, <s2,s3, B2↓,[1,4]>,
<s2,s4,C3↓,[2,3]>, <s3,s4,D1↓,[1,2]>,
<s4,s1,E2↓,[1,2]>}, and σ={s1}.

Figure 2. A service specification example

Definition 2: A projected service specification PS-
SPECi is the projection of the S-SPEC onto SAPi.
The PS-SPECi is modeled by a TFSM denoted by a
tuple (Ss’,Ts’,σ’) where:
1. Ss’ = Ss
2. Ts’ = {<head(t), tail(t), SP, [mint,maxt]>| t∈Ts and
SAP(SP)=i}∪ {<head(t), tail(t), ε, ε >| t∈Ts and
SAP(SP)≠ i}
3. σ’ = σ

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp410-417)

Figure 3 shows the projected service
specifications for the S-SPEC given in Figure 2. In
PS-SPEC1, Ss’={s1, s2, s3, s4}, Ts’=
{<s1,s2,A↓,[1,3]>, <s2,s3, ε,ε>, <s2,s4,ε,ε>,
<s3,s4,D↓,[1,2]>, <s4,s1,ε,ε>}, and σ={s1}.

2.2 Protocol specification model
The protocol specification consists of the
specifications of the protocol entities that cooperate
to provide the service described in the service
specification.

Definition 3: The protocol entity specification PE-
SPECi is also modeled by a TFSM denoted by a
tuple (Spi,Tpi,σpi) where:
1. Spi is a non-empty finite set of states of protocol
entity i.
2. Tpi is a finite set of transitions such that each
transition t∈Tpi is a 4-tuple <head(t), tail(t), Ei,
[mint,maxt]> where:
a. head(t) and tail(t) are respectively the head and
the tail states of t.
b. Ei is a protocol event that can be either (1) an SP
that passes through SAPi, (2) an event message E
sent from PEi denoted by !ei, or (3) an event
message E received by PEi denoted by ?ei.
c. [mint,maxt] is the time interval associated with t
such that the transition t can be executed only within
the time T since head(t) is visited, where
mint≤T≤maxt. The time interval is associated with
only the transition that has the first type of Ei. The
time required for sending an event from PEi and
receiving the event by PEj (i.e., protocol events of
Types 2 and 3) is controlled by the delay of the
channel between the two protocol entities. This
delay is considered -as will be illustrated in Section
4- when computing the time interval for the SP (i.e.,
the protocol event of Type 1). Therefore, no time
interval is associated with transitions that have
events of Types 2 and 3.
3. σpi ∈ Spi is the initial protocol state.

Figure 5 shows three PE-SPEC examples. For
PE-SPEC1, Spi={s1, s2, s3}, Tpi= {<s1,s2,A/!a2,3,
[1,2.8]>, <s2,s3,?b1,ε>, <s3,s2,D/!d2,[1,1.9]>, <s2,
s1,?e2,ε>}, and σpi={s1}. In this work, we assume
that the communication medium between the
protocol entities is reliable and the messages are
delivered in the first-in-first-out (FIFO) order. Each
channel between two protocol entities PEi and PEj
has a delay dij such that min(dij)≤dij≤max(dij), where
min(dij) and max(dij) are respectively the minimum
and maximum delay of the channel from PEi to PEj.

3 Related Research
In this section, an overview of other related research
is provided and the basic service-oriented synthesis
method introduced in [2] is briefly described.

3.1. Other Related Research
Two approaches are used in designing
communication protocols: analysis and synthesis. In
the analysis approach, a sequence of design,
analysis, error detection and correction is applied
iteratively to produce error-free design. In the
synthesis approach, the protocol design is
constructed or completed in such a way that no
further validation is needed. Some protocol synthesis
methods start the derivation process from a complete
service specification [2,3,4,5,6,7,8,9,10,11,12] and
others do not [13,14]. The protocol synthesis
methods can be further classified according to the
used models. The used models include finite state
machines [2,4,9,10], Petri-nets [5,11,12], and
LOTOS-like [3,6,7,8].

Some of the service-oriented protocol synthesis
methods consider the timing requirements given in
the service specification [7,8,9,11] and others do not
[2,3,4,5,6,10]. The method of dealing with timing
constraints provided in the service specifications in
[7,8, and 11] cannot be directly applied in this paper
because a different model is used (i.e., Petri-nets and
LOTOS-like models). In [8], the channel delay is
assumed negligible while in [7], the minimum
channel delay is assumed to be always zero. In [9],
the timing constraints provided in the service
specifications that have concurrency behavior are
considered. The paper assumes that only the upper
bound of delay for each channel is given and the
lower bound is assumed to be always zero as in [7].
In this paper, the timing constraints provided in the
service specifications that have sequential behavior
are considered and the lower bound of the channels
is generalized to be any nonnegative value.

3.2. The Basic Synthesis Method
The synthesis method introduced in [2] uses FSM to
model both service and protocol specifications. The
models are similar to the models introduced in
Section 2 except for the time interval associated with
the transitions. The timing constraints are not
considered in the basic synthesis method.

To synthesize the protocol specification from the
service specification, three steps are followed.
1. Project the service specification S-SPEC onto
each SAP to obtain the PS-SPECs defined in

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp410-417)

Definition 2.
2. Apply the transition synthesis rules to each
transition in the PS-SPECs to obtain the PE-SPECs.
The transition synthesis rules are the same as the
rules given in Table 1 but with no time intervals.
3. Remove ε-cycles and ε-transitions by using
algorithms described in [15] to obtain the reduced
PE-SPECs.

Ignoring the time intervals given in Figures 2, 3,
4, and 5, Figures 3, 4, and 5 show the PS-SPECs,
PE-SPECs, and reduced PE-SPECs after applying
Steps 1, 2, and 3, respectively, for the S-SPEC given
in Figure 2.

4 Timed Protocol Synthesis Method
To synthesize timed protocol specifications, the
service specification has to be provided with time
constraints associated with the transitions of the
TFSM. In this section, the time assignment to the S-
SPEC transitions is discussed and the synthesis
method for the timed protocol specification is
introduced. Finally, a small example is illustrated.

4.1 Service specification time assignment

The assignment of the service specification time
constraints is performed during the S-SPEC design
process. These time constraints are assigned as time
intervals associated with the transitions of the TFSM
that models the S-SPEC. The time interval
[mint,maxt] means that the transition t can be
executed only within the time T since the source
state of t is visited, where mint,≤T≤maxt. The time T
includes the waiting time Tw since the source state is
visited. If the SP associated with the transition is to
be sent from one Protocol Entity (PE) to another, the
time T includes also the time required for sending
the SP from the source PE and receiving the SP by
the destination PE. The time for sending and
receiving an SP from PEi to PEj is the delay dij of the
channel between the two PEs. Therefore,
mint=min(Tw)+min(dij) and, consequently, mint has
to be greater than or equal to min(dij). Similarly,
maxt=max(Tw)+max(dij) and, consequently, maxt has
to be greater than or equal to max(dij). In addition,
the mint and maxt have to be assigned such that
max(Tw)≥min(Tw). In other words, maxt-max(dij)≥
mint-min(dij). Thus, maxt≥mint+(max(dij)-min(dij)).
In some cases, an SP associated with a transition can
be sent to more than one PE (e.g., in Figure 2, A1 is
sent to PE2 and PE3). Let X be a set of the protocol
entities that can receive the SP. Generally, if an SP
associated with a transition t can be sent from PEi to

more than one PE such that each PE∈X, the time
interval associated with t has to be assigned such
that ∀j∈X, mint≥min(dij) and maxt≥max(dij).This
means that mint≥maximum∀j∈X(min(dij)) and
maxt≥maximum∀j∈X (max(dij)). Similarly, ∀j∈X,
maxt≥mint+(max(dij)-min(dij)). This means that
maxt≥mint+maximum∀j∈X(max(dij)-min(dij)).

For example, in Figure 2, the service primitive A1
is sent to PE2 and PE3. You can notice that the
conditions maxt≥maximum(max(d12),max(d13)) (i.e.,
3>maximum(0.1,0.2)), mint≥maximum(min(d12),
min(d13)) (i.e., 1>maximum(0,0.1)), and maxt≥mint+
maximum((max(d12)-min(d12)),(max(d13)-min(d13)))
(i.e., 3>1+maximum((0.1-0),(0.2-0.1)) are satisfied.

4.2. Synthesis of timed protocol specifications
An automatic synthesis method for the protocol
entities from a service specification is introduced in
[2] and summarized in Section 3. In this section, the
synthesis method is extended to consider the timing
constraints provided in the service specification.

To consider the timing constraints, the first two
steps of the basic method are extended. Then the
third step is applied as-is.

Step 1 Extension
In this first step of the basic synthesis method, the
service specification S-SPEC is projected onto each
SAP to obtain the PS-SPECs. The PS-SPEC
obtained by the projection of the S-SPEC onto SAPi
includes the same states and transitions of the S-
SPEC. The only difference is in the labels of the
transitions associated with the events that do not
pass through SAPi. These events are substituted by
ε-events. In the basic synthesis method, the
transitions of the PS-SPECs are not associated with
time intervals because the S-SPEC does not include
them. In the extended synthesis method, the
transitions of the PS-SPECs are associated with the
same time intervals associated with the transitions of
the S-SPEC. The PS-SPEC transitions associated
with ε-events are not assigned to time intervals.
Figure 3 shows the PS-SPECs derived from the S-
SPEC given in Figure 2.

Step 2 Extension
In the second step of the basic synthesis method, a
set of transition rules are applied to each transition (ε
or SP-labeled) in the SP-SPECs to obtain the
protocol entities. In the extended synthesis method,
these rules are extended to consider the time
intervals associated with the transitions of the PS-
SPEC. The extended rules and the conditions for

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp410-417)

their applications are summarized in Table 1. In this
table, OUT(s) means the SAPs at which the events
associated with the outgoing transitions from state S
pass through. For example, in Figure 2,
OUT(s2)={2,3} because the service primitive B
passes through SAP2 and the service primitive C
passes through SAP3. The intuition for these
extensions are given below.

a. Transition labeled by an SP in PS-SPECi:
Rule a.1: This rule implies that the flow of control
needs not be transferred to another protocol entity or
service user. Therefore, no channel delays are to be
considered. In this case, the same time interval is
considered without changing.
Rule a.2: In this case, the transition is taking back
the service to its initial state and, therefore, a
synchronization message is sent to all other PEs.
Thus, the channel delays between the PEi and all
other PEs have to be considered. In this case, the
maximum and the minimum channel delays among
the considered ones are respectively subtracted from
maxt and mint of the transition to obtain the new
maxt and mint values.
Rule a.3: In this case, the SP is sent to a service user
not to another PE. Therefore, no channel delays are
to be considered. In this case, the same time interval
is considered without changing.
Rule a.4: In this case, the SP is originating from the
service user at SAPi. After the occurrence of this SP,
other SPs are observed at other SAPs. A
synchronization message is sent from PEi to the
other corresponding PEs. Therefore, the channel
delays between the PEi and the other corresponding
PEs have to be considered as illustrated in Rule a.2.
Rule a.5: The intuition of this rule is similar to Rule
a.3.

Table 1. Summary of the transition synthesis rules

and the conditions for their application

b. Corresponding transition labeled by ε in
another PS-SPEC
The transition associated with ε-event is either
remains the same (Rules b.1, b.3, and b.5) or is
associated with a receiving message for the
synchronization message sent by PEi. The transition
associated with an ε-event is not assigned a time
interval and, therefore, no timing constraints are to
be considered. In addition, The transition associated
with a receiving message is not assigned a time
interval because the time required to execute this
transition is part of the channel delay already
considered in Rules a.2 and a.4.

4.3 Example
Figure 2 shows a S-SPEC example. Figure 3 shows
the three PS-SPECs obtained by applying Step 1 of
the extended synthesis method. Finally, Figures 4
and 5 show the three PE-SPECs resulting from
applying Steps 2 and 3 of the extended and basic
synthesis methods, respectively. In PE1, the
transition associated with the service primitive A has
the time interval [1-min(min(d12),min(d13)),3-max
(max(d12),max(d13))] and the transition associated
with the service primitive D has the time interval [1-
min(d12),2-max(d12)]. In PE2, the transition
associated with the service primitive E has the time
interval [1-min(min(d21),min(d23)),2-max(max(d21),
max(d23))] and the transition associated with the
service primitive B has the time interval [1-min(d21)
,4-max(d21)]. Finally, In PE3, the transition
associated with the service primitive C has the time
interval [2-min(d32),3-max(d32)].

5 Proof of correctness
Proving the correctness of the synthesis method
requires proving that the synthesis method is
syntactically and semantically correct. This proof is
provided in [2] but without timing constraints.
Therefore, to complete the proof, we prove here that
the time assignments to the transitions of the PEs as
a result of applying the extended synthesis method
conform to the time constraints assigned to the
transitions of the S-SPEC.

Lemma 1. In the PEs, the time T required for
executing an SP is mintp≤T≤maxtp such that the time
interval [mint,maxt] is associated with the
corresponding transition in the S-SPEC and mint≤
mintp≤T≤maxtp≤maxt.
Proof: An SP executed in a PE is either (1) not sent
to another PE (Rule a.1), (2) sent to a service user

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp410-417)

(Rules a.3 and a.5), or (3) sent to one or more other
PEs (Rules a.2 and a.4). In the first two cases, the SP
is not sent to another PE and, therefore, no channel
delays are to be considered. As a result, in these two
cases, the time required to execute the SP in the PE
is the same as the time associated with the
corresponding transition in the S-SPEC (i.e., (mint=
mintp)≤T≤(maxtp=maxt)).

Figure 3. The PS-SPECs obtained by applying

Step 1 of the extended synthesis method.

Figure 4. The PE-SPECs obtained by applying

Step 2 of the extended synthesis method.

Figure 5. The PE-SPECs obtained by applying

Step 3 of the basic synthesis method.

For the third case, the SP is either sent to another
PE or sent to more than one other PEs. If the SP is
sent to another PE, the time required to execute the
SP in the PE is the waiting time since the source
state is visited and the channel delay dij. The waiting
time is the time associated with the PE transition
labeled by SP. As given in Rule a.2, this time is T
such that mint-min(dij)≤T≤maxt-max(dij). As a result,

the time required to execute the SP in the PE (i.e.,
waiting time + channel delay) is T such that mint-
min(dij)+dij≤T≤maxt-max(dij)+dij. This means that
mintp= mint-min(dij)+dij and maxtp= maxt-max(dij)+
dij. Since mint-min(dij)+dij and min(dij)≤dij, then
mint-min(dij)+min(dij)≤mint-min(dij)+dij≤T. As a
result, mint≤mintp≤T. Similarly, since T≤maxt-
max(dij)+dij and dij ≤ max(dij) then T≤maxt-max(dij)+
dij≤maxt-max(dij)+max(dij). Therefore, T≤maxtp≤
maxt. As a result, in this case, in the PEs, the time T
required for executing an SP is T such that mint≤
mintp≤T≤maxtp≤maxt.

The last case is when the SP is sent from one PE
to more than one other PEs. In this case, the waiting
time associated with the transition labeled by SP, as
given in Rule a.2, is T such that mint-
minimum∀j∈X(min(dij))≤T≤maxt - maximum∀j∈X(max
(dij)) where X is the set of the protocol entities that
can receive the SP. When considering the channel
delays, the minimum time T required to execute the
SP is calculated such that mint-minimum∀j∈X(min
(dij))+minimum∀j∈X(dij)≤T. Since minimum∀j∈X (min
(dij))≤minimum∀j∈X (dij), then mint-minimum∀j∈X

(min(dij))+minimum∀j∈X(min(dij))≤ mint-minimum
∀j∈X(min(dij))+minimum∀j∈X(dij)≤T. As a result, mint

≤mintp≤T. Similarly, the maximum time T required
to execute the SP is calculated such that T≤ maxt-
maximum∀j∈X(max(dij))+maximum∀j∈X(dij). Since
maximum∀j∈X (dij)≤maximum∀j∈X (max(dij)), then
T≤ maxt-maximum∀j∈X(max(dij))+maximum∀j∈X(dij)
≤ maxt-maximum∀j∈X(max(dij))+maximum∀j∈X(max
(dij)). Therefore, T≤maxtp≤maxt. As a result, in this
final case, in the PEs, the time T required for
executing an SP is T such that mint≤ mintp≤
T≤maxtp≤maxt.

As a result, for all cases, in the PEs, the time T
required for executing an SP is mintp≤T≤maxtp such
that the time interval [mint,maxt] is associated with
the corresponding transition in the S-SPEC and
mint≤ mintp≤T≤maxtp≤maxt. ■

Lemma 2. For any sequence of SPs in the S-SPEC
executed during the time interval [mint,maxt], the
corresponding SPs in the PEs are executed within
the same or narrowed time interval.
Proof: The execution of sequence of n SPs in the S-
SPEC is performed during the time interval
[mint,maxt] such that mint = mint(SP1)+ mint(SP2)+
….+ mint(SPn) and maxt = maxt(SP1)+ maxt(SP2)+
….+ maxt(SPn). By Lemma 1, for any SP, mint(SP)
in the PE-SPEC is greater than or equal to the
mint(SP) in the S-SPEC and maxt(SP) in the PE-
SPEC is less than or equal to the maxt(SP) in the S-

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp410-417)

SPEC. Therefore, the execution of the sequence of n
SPs in the PE-SPECs is performed within the same
or narrowed time interval [mint,maxt]. ■

Lemma 3. The time constraints assigned to the
transitions of the PEs as a result of applying the
extended synthesis method conform to the time
constraints assigned to the transitions of the S-
SPEC.
Proof: As a result of assigning time intervals to the
transitions of the PEs using the extended synthesis
method, the execution of any sequence of SPs in the
PEs is performed during the same or narrowed time
intervals given in the S-SPEC (Lemma 2).
Therefore, the time constraints assigned to the
transitions of the PEs as a result of applying the
extended synthesis method conform to the time
constraints assigned to the transitions of the S-
SPEC. ■

6. Conclusions and Future Work
In this paper, a synthesis method for protocol
specifications from service specifications is
extended such that the timing constraints provided in
the service specification are considered in the
resulting protocol specifications. This extension
makes the synthesis method applicable for real time
applications. The extension uses the TFSM for
modeling both the service and protocol
specifications. In this paper, the assignment of the
timing constraints to the service specification is
discussed. In addition, it is shown how to map the
timing constraints associated with the transitions of
the service specification model to the transitions of
the protocol specification models. The maximum
and minimum delays of the channels between the
protocol entities are considered in this paper when
mapping the timing constraints. Finally, the
introduced extension is proved to be correct in terms
of the conformation of the timing constraints
computed for the protocol specifications to the
timing constraints provided in the service
specification.

The basic synthesis method extended in this paper is
limited to the service specifications that have sequential
behavior (i.e., only one service primitive can be executed
at once). In future, we plan to extend the basic synthesis
method to handle possible concurrent occurrence of
service primitives in the service specifications. In
addition, we intend to study the affect of the concurrent
behavior of the service specification on the assignment of
the time constraints to the service and protocol
specifications.

References
[1] R. Probert and K. Saleh, Synthesis of

communication protocols: survey and
assessment, IEEE Transactions on Computers,
Special Issue on Protocol Engineering, 40(4),
1991, pp. 468-475.

[2] K. Saleh and R. Probert, Automatic synthesis of
protocol specifications from service
specifications, Proceedings of the 10th IEEE
International Phoenix Conference on
Computers and Communications (IPCC-91),
March 1991, pp. 615-621.

[3] G.V. Bochmann and R. Gotzhein, Deriving
protocol specifications from service
specifications, Proceedings of SIGCOMM’86,
1986, pp. 144-156.

[4] P.M. Chu and M.T. Liu, Synthesizing protocol
specifications from service specification in the
FSM model, Proceedings of Computer
Networking Symposium, 1988, pp. 173-182.

[5] Z.P. Tao and M. Goossens, Synthesizing
communication protocol converter: a model and
method, Proceedings of the 1992 ACM Annual
Conference on Communications, Kansas City,
Missour, US, 1992, pp. 17-24

[6] R. Gotzhein and G.V. Bochmann, Deriving
protocol specifications from service
specifications including parameters, ACM
Transactions on Computer Systems, 8(4), 1990,
pp. 255-283.

[7] A. Khoumsi, New results for deriving protocol
specifications from service specifications for
real-time applications, Proceedings of the
Maghrebian Conference on Software
Engineering and Arterial Intelligent (MCSEAI),
Tunis, Tunisia, December 1998.

[8] M. Kapus-Kolar, Deriving protocol
specifications from service specifications with
heterogeneous timing requirements,
Proceedings of IEEE 3rd International
Conference on Software Engineering for Real-
Time Systems, Cirenchester, UK, 1991, pp.
1093-1096.

[9] J. Park and R.E. Miller, Synthesizing protocol
specifications from service specifications in
timed extended finite state machines,
Proceedings of the 17th International
Conference on Distributed Computing Systems
(ICDCS '97), 1997, pp. 253.

[10] T. Higashino, K. Okano, H. Imajo, K.
Taniguchi, Deriving protocol specifications
from service specification in extended FSM
models, Proceedings of the 13th International
Conference on Distributed Computing Systems,
1993, pp. 141-148.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp410-417)

[11] H. Yamaguchi, K. Okano, T. Higashino, K.
Taniguchi, Protocol synthesis from time Petri
Net based service specifications, Proceedings of
the 1997 International Conference on Parallel
and Distributed Systems, 1997, pp. 236 – 243.

[12] H. Yamaguchi, K. El-Fakih, G. von Bochmann,
and T. Higashino, Protocol synthesis and re-
synthesis with optimal allocation of resources
based on extended Petri nets, Distributed
Computing, 16(1), 2003, pp. 21-35

[13] T.Y. Choi, Sequence method for protocol
construction, Proceedings of the 6th IFIP

International Symposium on Protocol
Specification, Testing, and Verification, 1986,
pp. 307-321.

[14] Y.X. Zhang, K. Takahashi, N. Shiratori, and S.
Noguchi, An interactive protocol synthesis
algorithm using a global state transition graph,
IEEE Transactions on Software Engineering,
SE-14(4), 1988, pp. 394-404.

[15] W.A. Barrett and J.D. Couch, Compiler
Construction: Theory and Practice, Chapter 3,
Science Research Associates, 1979.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp410-417)

	P.O. Box 5969, Safat 13060
	KUWAIT
	
	3 Related Research
	4 Timed Protocol Synthesis Method
	References

