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Abstract: - In the present paper, we introduce a bivariate generalization of Bleimann, Butzer and Hahn (BBH) 
operators. Korovkin type approximation properties and rate of convergence of these bivariate operators are 
established. In the last part, we obtain bounded variation properties of this generalization. 
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1 Introduction 
There are many approximating linear positive 
operators in literature that their approximation 
properties are investigated. 

In [6], Bleimann, Butzer and Hahn introduced an 
approximating operator: 
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The operators (1.1) are also called as Bleimann, 
Butzer and Hahn (BBH) operators.  

In [6], pointwise convergence properties and rate of 
convergence of );( xfLn  to )(xf  for operators 
(1.1) are investigated in a compact sub-interval 

],0[ b  of ),0[ ∞ . Then many studies are given about 
BBH operators in the literature. Some of them, in 
[12], R.A. Khan obtained a rate of convergence for 
BBH operators using probabilistic methods. Also in 
[10], T. Herman investigated the behavior of the 
operators (1.1) when the growth condition for f is 
weaker than polynomial one. In [11], C. Jayasri and 
Y. Sitaraman, using the test functions 
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for the operators (1.1).  
Some generalization of BBH operators are 
investigated by O. Agratini in [1], [2] and O. Doğru 
et. al in [7],  [8]. 

Recently A.D. Gadjiev and Ö. Çakar [9] obtained a 
Korovkin type theorem and investigated the 
approximation properties of the BBH operators 
with the help of the test functions 
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First, D.D. Stancu [18] introduced the bivariate 
Bernstein polynomials and estimated order of 
approximation for these operators. 

The main purpose of this study is to extend the 
operators (1.1) to the case of Stancu type operators 
in two variables and obtain Korovkin type 
approximation properties and rate of convergence 
of this extension. 
In the last part, we shall give bounded variation 
properties of this bivariate operators. 
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2 Construction of Operators    
The first aim of this part is to construct a bivariate 
extension of BBH operators by similar way given 
by D.D. Stancu in [18]. 
For ),0[),0[2 ∞×∞=+R  and RRf →+

2: , let us 
introduce bivariate extension of BBH operators as 
follows: 
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Now, let us define spaces and norm using in this 
study. 
Let )( 2

+RCB  be the space of functions f  which is 

continuous and bounded on .2
+R  Then )( 2

+RCB is a 
linear normed space with 
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then we say that the sequence { }mnf ,  converges 
uniformly to f. 
As similarly in [9], let us introduce a space denoted 
by )( 2

+ω RH . 

Let )( 2
+ω RH  be a subspace of real valued functions 

satisfying the following condition: 
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and )(δω  is a modulus of continuity type functions 
so that the following conditions are satisfied: 
(i) )(δω is non-negative and increasing for δ , 
(ii) 0)(lim

0
=δω

→δ
. 

Due to (ii), we can say that )( 2
+ω RH ⊂ )( 2

+RCB .  

The space )( +ω RH  was introduced by A.D. 
Gadjiev and Ö. Çakar [9] for the functions with one 
variable.  
Also in [9], the following Korovkin type theorem is 
proved:  
 
Theorem 2.1. [9] Let nA  be the sequence of linear 

positive operators, acting from  )( +ω RH  to 
),0[ ∞BC  satisfying three conditions 
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Then for any function ∈f )( +ω RH , we have 
.0lim =−

∞→ BCnn
ffA  

Gadjiev and Çakar, in [9], applied this theorem to 
classical BBH operator. In their application they 
have obtained the following equality for BBH 
operator: 
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Notice that, details about Korovkin type theorems 
can be found in [13] (see also [3]).  
Now, we recall the following Korovkin type 
theorem given by Volkov [20] for the functions 
with two variables. 
Let n and m be two positive integers, 

1,0 ,, ≤βα≤ mjnk , ,0),(),(
, ≥yxP mn
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is a sequence of positive linear operators. 
 
Theorem 2.2. [20] Suppose that the operators mnT ,  
defined in (2.5) satisfy the following four 
conditions: 
(i)  ,0)(lim
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Then the sequence of operators (2.5) converges 
uniformly to f in 2]1,0[  for ).]1,0([ 2Cf ∈  Where  

ije  are defined as monomials .),(: ji
ij yxyxe →  

Similarly, let us give the following Korovkin type 
theorem: 
 
Theorem 2.3. Suppose that mnA ,  is the positive 

linear operators acting from )( 2
+ω RH  to 

)( 2
+RCB satisfying the conditions: 
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)2(0000,

,
=−

+∞→ RCmn
mn

eeA  

(ii) ,0~)~(lim
)2(1010,

,
=−

+∞→ RBCmn
mn

eeA  

(iii) ,0~)~(lim
)2(0101,

,
=−

+∞→ RBCmn
mn

eeA  

(iv) .0)~~()~~(lim
)2(01100110,

,
=+−+

+∞→ RBCmn
mn

eeeeA  

Then the sequence of positive linear operators 

mnA ,  converges uniformly to f in 2
+R  for 
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functions defined as 
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Also, since f  is bounded, there exists a positive 
constant M such that 
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By applying the positive linear operator nA  to the 
inequality (2.5), we have 
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By using the equalities (2.4) in (2.6), the proof is 
completed. 
To obtain Korovkin type approximation properties 
of our operators in (2.1), we need the following 
lemmas. 
 
Lemma 2.4. Let mnL ,  be the operators defined in 
(2.1), then we have 
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Proof. This proof can be easily proven using the 
similar technique given by D. Barbosu [5],  so we 
will omit it. 
 
Lemma 2.5. We have the following for operators 
(2.1): 
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Proof. By using the Lemma 2.4 and equalities 
(2.4), (i-iv) can be easily shown. We will omit this 
proof too. 
 
In the light of Theorem 2.3 and Lemmas 2.4 and 
2.5, we can give our main result as follows: 
 
Theorem 2.6. The sequence of operators (2.1) 
converges uniformly to f for any .)( 2

+ω∈ RHf   
Proof. Due to Lemma 2.5, all hyphotesis of 
Theorem 2.3 are satisfied for the operators (2.1) 
which gives the proof. 
 
3 Rates of Convergence 
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modulus  
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It is clear that, similarly to the classical modulus of 
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Theorem 3.1. Let nL  be the sequence of operators 
in (1.1). Then we have 

))(;(~2)();( xfxfxfL nn δω≤−        (3.2) 
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By using the Cauchy-Schwarz inequality in (3.3), 
we have 
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By choosing )(2, xnn µ=δ  in (3.4), we have (3.2) 

immediately. 
 
Now, let us introduce the following modulus of 
smoothness for bivariate case similarly in [15] (see, 
for details, [4, Sec. 2.3]): 
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Theorem 3.2. Let mnL ,  be the sequence of 

operators in (2.1).Then we have, for all 2),( +∈Ryx , 
we obtain 
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where  
)()( xx nn δ=α  and )()( yy mm δ=β  

and )(xnδ is similarly as in Theorem 3.1. 
Proof. Using the Cauchy-Schwarz inequality in 
(3.6), the proof follows by the Theorem 3.1. 
 
Remark 3.3. According to the (3.5), if 

)( 2
+ω∈ RHf  then (3.7) gives the pointwise rate of 

convergence of  ),;(, yxfL mn  to ),( yxf . 

 
Remark 3.4. We mention that, a similar result 
given in Theorem 3.2 can be obtained by means of 
the bivariate modulus of smoothness introduced by 
Martinez [16]. 
 
4 Derivative Properties 
First explicit formula for derivatives of Bernstein 
polynomials with difference operator was given by 
G.G. Lorentz [14]. In [14], the author also obtained 
an estimate between the variation of the Bernstein 
polynomials );( xfBn  and total variation of the 
function f. Then in [19], D.D. Stancu obtained the 
monotonicity properties of Bernstein polynomials 
in different orders by means of divided differences. 
Recently, in [7], O. Doğru obtained a formula for 
the variation of BBH type generalization of Balász 
operators by means of total variation of function f. 
In this part, for 2),( +∈Ryx , let us introduce 
variation of any bivariate operator ),;(. yxfA mn  as 
follows: 
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On the other hand, it is obvious that 
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are satisfied. By using (4.3) and (4.4) in (4.2), we 
obtain desired result. 
 
Remark 4.2. Notice that, all results given in this 
paper can be extended to cases of n-variate 
functions. 
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