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Abstract: - This paper presents a new and simple controller for transient stabilization with voltage regulation of a 
synchronous power generator connected to an infinite bus. The overall stability of the system is shown using Lyapunov 
technique.  The design of the proposed controller takes into account the important non linearities of the power system 
model and it is independent of the equilibrium point. Simulation results have been shown to demonstrate the 
effectiveness of the proposed controller for the enhancement of the transient stability and voltage regulation of the 
power system under a large sudden fault and a wide range of operating conditions. 
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1 Introduction 
The high complexity and nonlinearity of power systems, 
together with their almost continuously time varying 
nature, have deal of challenge of power system control 
engineers for decades. A particular issue encountered at 
the generating plant level is to maintain stability under 
various operating conditions. In order to obtain high 
quality for synchronous generator controllers, many 
researches has been established and numerous paper are 
published. Conventional excitation controllers such as 
the automatic voltage regulator (AVR) and power 
system stabilizer (PSS) are mainly designed by using 
linear control theory [1], [2]. These excitation controllers 
can be used effectively to damp oscillation and insure 
asymptotic stability of the equilibrium following small 
perturbation. In case of a large fault, the operating point 
of the system may vary considerably;  non linearities 
begin to have then significant effects and a linear 
controllers may not be able to maintain asymptotic 
stability [3].  
     Recently, advanced nonlinear controller technique, 
which are independent of the equilibrium point and take 
into account the important non-linearities of the power 
system model have been used in the excitation control of 
power systems [4], [5], [6]. Most of these controllers are 
based on feedback linearization technique [3], [7], [8].  It 
was shown in the literatures that the dynamics of the 
power system could be exactly linearized by employing 
nonlinear state feedback. The essence of this technique is 
to first transform a nonlinear system into a linear on by a 
nonlinear feedback, and then uses the well-known linear 
design techniques to complete the controller design. 
Consequently one can use conventional linear control to 

give acceptable performance [9], [10] and [11]. 
Nevertheless in many cases the feedback linearization 
method requires precise parameters plant and often 
cancels some useful non-linearities. It is well known that 
power systems contain some parametric uncertainties in 
practice. In this case, it is difficult to exactly linearize the 
system with nominal parameters.  Adaptive versions of   
the   feedback   linearizing controls are then developed in 
[12], [13].   Feedback linearization is recently enhanced 
by using robust control designs such as H∝ control and 
L2 disturbance attenuation [14], [15].   
     Lyapunov theory has for a long time been an 
important tool in linear as well as nonlinear control [16]. 
However, its use within nonlinear control has been 
hampered by the difficulties to find a Lyapunov function 
for a given system. If one can be found, the system is 
known to be stable, but the task of finding such a 
function has often been left to the imagination and 
experience of the designer.The aim of this paper is the 
design of a control law for a nonlinear excitation 
controller to enhance the transient stability and to ensure 
good post-fault voltage regulation for synchronous 
generator connected to an infinite bus through a 
transmission line, as shown in Fig. 1. The model of the 
synchronous machine used is a 7th order model, 5 for the 
electrical dynamics and 2 for the mechanical dynamics, 
which takes into account the stator dynamics as well as 
the damper winding effects and practical limitation on 
control. The feedback system is globally asymptotically 
stable in the sense of the Lyapunov stability theory.  
     The rest of this paper is organized as follows. In 
section 2, we describe the single-machine-infinite-bus 
power system model in a state space form suitable for 
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Lyapunov-based control design. In section 3, the 
nonlinear excitation controller is derived. The stability of 
this controller is proven. Some illustrative simulation 
results are presented and compared to the performance of 
a standard regulator voltage AVR and PSS in section 4 
to validate the proposed controller and some concluding 
remarks are mentioned in the final section. 
 
 
2 Mathematical model of power system 
The generator to be controlled, studied in this work, is 
shown in    Fig. 1.   It    consists   of   synchronous 
generator connected to an infinite bus via a transmission 
line (SMIB). The synchronous machine equations in 
terms of Park’s d-q axis are expressed as follows [17], 
[18]: 
Armature windings 

                           d s d qv R i dωλ λ= − − +
i

                        (1) 

                           q s q dv R i qωλ λ= − + +
i

                        (2) 
where 
                          (d d d md fd kL i L i i )dλ = − + +                    (3)  
                          q q q mqL i L ikqλ = − +           (4) 
Field winding 

                 fd s fd md d fd fd md kdi L i L i L i= − + +
i i i

v R               (5) 
Damper windings  

                    0 kd kd md d md fd kd kdR i L i L i L i= − + +
i i i

            (6) 

                    0 kq kq mq d kq kqR i L i L i= − +
i i

                          (7) 
where vd, vq are direct and quadrature axis stator terminal 
voltage  components, respectively; vfd is the excitation 
control input; id, iq direct and quadrature axis stator 
current components, respectively;  ifd  the field winding 
current;  ikd, ikq direct and quadrature axis damper 
winding current components, respectively; λd,λq direct 
and quadrature axis flux linkages, respectively; Rs the 
sator resistance;  Rfd the field resistance;  Rkd, Rkq the 
damper winding resistances; Ld, Lq the direct and 
quadrature self inductances, respectively; Lfd the rotor 
self  inductance; Lkd, Lkq direct and quadrature damper 
winding self inductances, respectively and Lmd, Lmq direct 
and quadrature magnetizing inductances, respectively.  
 
Mechanical equation 

                                                                    (8) 1δ ω= −
i

                         2 m eH T T Dω ω= − −
i

                        (9) 
where ω  is the angular speed of the generator; δ the rotor 
angle of the generator; Tm the mechanical torque; Te the 
electromagnetic torque; D the damping constant and H 
the inertia constant.    

The equation for transmission network with external 
resistance and inductance , in the Park transformed 
coordinates are 

eR eL
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Fig. 1. Single machine infinite bus. 
 

        v R cos( )d e d e d e qi L i L i V aω δ∞= + − + −
i

δ

             (10) 

        sin( )q e q e q e dv R i L i L i V aω ∞= + + − −
i

              (11) 
 

where V∝ is the infinite bus voltage and a is its phase 
angle. 
By combining equations (1) to (11), the resultant 
generator system model, in per unit, has the following 
form 

  11 12 13 14 15

16 1        cos( )
d d fd q kd kq

fd

i a i a i a i a i a i

a a b v

ω ω

δ

= + + + +

+ − + +

i

                (12) 

21 22 23 24 25

26 2        cos( )
fd d fd q kd kq

fd

i a i a i a i a i a i

a a b v

ω ω

δ

= + + + +

+ − + +

i

              (13) 

31 32 33 34 35

36        sin( )
q d fd q kdi a i a i a i a i a i

a a

ω ω ω

δ

= + + + +

+ − +

i

kq               (14) 

41 42 43 44 45

46 3        cos( )
kd d fd q kd kq

fd

i a i a i a i a i a i

a a b v

ω ω

δ

= + + + +

+ − + +

i

               (15) 

               (16) 51 52 53 54 55

56        sin( )
kq d fd q kd kqi a i a i a i a i a i

a a

ω ω ω

δ

= + + + +

+ − +

i

                        (17) 61 62 63 64

65 66      
d q fd q q kd d kq

m

a i i a i i a i i a i i

a a T

ω

ω

= + + +

+ +

i

     ( 1Rδ ω ω )= −
i

                        (18) 
where ωR  is the electrical frequency; aij and bi are 
constants which depend on the generator and on the load 
parameters [3]. 
 
 
3 Design of a nonlinear excitation 

controller 
Lyapunov’s second or direct method is a very powerful 
tool of assessing stability of a nonlinear system [16], 
[19]. In this paper, the concept of Lyapunov’s stability 
criterion is used to select the control strategy of the 
Single Machine Infinite Bus (SMIB), in order to ensure 
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good steady and transient stability. To reach this 
objective, we define the terminal voltage error as 
                                     t te v v∗= −                      (19) 
where  is the desired trajectory and  1tv∗ =

                           2 2
t dv v v= + q                             (20) 

 
The expressions of and  as a function of the state 
variables can be expressed as follow        

dv qv

   11 12 13 14 15

16 17        cos( )
d d fd q kd kq

fd

v c i c i c i c i c i

c a c v

ω ω

δ

= + + + +

+ − + +
                (21) 

   21 22 23 24 25

26        sin( )
q d fd q kdv c i c i c i c i c i

c a
kqω ω ω

δ

= + + + +

+ − +
             (22) 

where cij are constants which depend on the constants aij 
and on the load parameters [3]. 
A positive definite Lyapunov function of the SMIB can 
be considered as 

                                      21
2

V                                 (23) e=

The time derivative of the V e can be written as ( )

                                       V                                   (24) ee=
i i

From the derivative of the terminal voltage error and by 
using (12)-(16) and (20)-(22), we obtains the following 
expression  

17 3 14 1 14 2

1

 

d d q q
t

qd d d d
fd fd

t t t t

e v v v v v
v

vv v v vc v b c v g c g v
v v v v

⎛ ⎞= = +⎜ ⎟
⎝ ⎠

= + + + +

i i i i

i i

q
tv

q

    (25) 

where  

                       (26) 
1 11 12 13

15 16    sin( )

d fd q q

kq kq

g c i c i c i i

c i i c a

ω ω

ω ω δ

⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

⎛ ⎞+ + + − +⎜ ⎟
⎝ ⎠

i i i i

i i

and     

        2 41 42 43 44 45

46                    cos( )
d fd q kd kg a i a i a i a i a i

a a

ω ω

δ

= + + + +

+ − +
        (27) 

Then the derivative of the Lyapunov function is 
computed as 
 

          
17 3 14 1

2 14                    

d d
fd fd

t t

qd
q

t t

v vV c v e b c v e g e
v v

vvg c e v e
v v

= + +

+ +

i i

i

d

t

v
v

               (28) 

Thus, the Lyapunov’s stability criterion can be satisfied 
by making term on the right hand side of (28) negative 
semi definite in order to guarantee the global asymptotic 
stability of the system. The candidates of fdv  that 

guarantees the semi negative definiteness criterion of 
equation (28) can be considered as 
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Fig. 2  Bloc diagram of the proposed nonlinear scheme
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                (29) 

where is a positive constant feedback gain. K
Substituting (29) into (28) the derivative of the 
Lyapunov function becomes 

                                  V                                      (30) 2

Define the following equation 
                          W t 2( ) 0                                   (31) = ≥
Furthermore, by using LaSalle Yoshizawa’s theorem 
[16], its can be shown that W t  tend to zero as t . 
Therefore, will converge to zero as. 

( ) →∞
e

 
 
4 Simulation results and discussion 
In order to validate the mathematical analysis and, 
hence, to establish the effectiveness of the proposed 
nonlinear control scheme, Simulations works are carried 
out for the Single Machine Infinite Bus System. The 
system configuration is presented as shown in Fig.2.The 
performance of the nonlinear controller was tested on the 
complete 7th order model of the generator system with 
the physical limit of the excitation voltage of the 
generator. The parameter values used in the ensuing 
simulation are given in the appendix. The fault 
considered in this paper is a symmetrical three-phase 
short circuit. The fault location is indexed by a constant 
λ which is the fraction of the line to the right of the fault. 
If λ = 1 the fault is at the infinite bus bar. 
     The simulated results are   given in Fig. 3.  It is 
shown terminal voltage, rotor speed, rotor angle and 
excitation voltage, respectively. The operating point 
considered is Pmo = 0.6 p.u. The   fault    occurs   closer 
to the infinite bus bar at t = 5s and removed by opening 
the barkers of the faulted line at t = 5.1s. As can be seen 
the post fault terminal voltage is regulated to its prefault 
value very quickly. It is quite evident that the proposed 
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controller achieves good transient stability, and dampens 
out the power angle oscillations. 
      In order to prove the robustness of the proposed 
controller, the results are compared with those of the 
linear controllers (conventional IEEE type 1 AVR and 
PSS). Fig. 4 and Fig. 5 show the responses of the 
terminal voltage under Pmo = 0.9 p.u , λ = 0.01 and Pmo = 
0.3 p.u,  λ = 1, respectively. It is seen how dynamics of 
the terminal voltage exhibit large overshoots during post 
fault state before he settle to its steady state value with 
the standard linear scheme than with the nonlinear 
controller. The proposed controller can quickly and 
accurately track the desired terminal voltage despite the 
different fault locations and operating points. 
     Another simulated terminal voltage responses for a 
sudden increase in the mechanical power is shown in 
Fig.6. The power system is started at mechanical power 
of Pmo = 0.3 p.u. Around t = 6s, the mechanical power is 
set at Pmo = 0.75 p.u.   It is shown that the terminal 
voltage of the linear controller shows remarkable 
transient before to steles to desired value, while the 
terminal voltage of the proposed controller is unaffected 
by this variation. From the results presented earlier, 

again the superiority of the nonlinear controller is 
observed.  
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Fig. 3 Simulated result of the proposed nonlinear excitation controller. 

 
 

5 Conclusion 
This paper has successfully demonstrated the design, and 
stability analysis of Lyapunov technique approach for 
the transient stability and voltage regulation of a SMIB 
power system based on the complete 7th order model of 
the generator system. First, the dynamic model of a 
SMIB was introduced. Then, a nonlinear control system 
was designed in the sense of Lyapunov control 
technique. The feedback system is globally 
asymptotically stable. The design of the controller is 
independent of the operating point. 
     Simulation results demonstrate that with the proposed 
controller, the generator excitation controller can 
effectively improve the voltage stability damp oscillation 
and enhance the transient stability of power system 
under a large sudden fault. With the derived control high 
and accuracy stability can be achieved compared to the 
conventional AVR and PSS controllers. 
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Fig. 4  Responses of the terminal voltage under Pmo = 0.9 p.u and λ = 0.01; 

 (solid) proposed controller; (dot) linear controllers. 
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Fig. 5 Responses of the terminal voltage under Pmo = 0.3 p.u and λ = 1;  

(solid) proposed controller; (dot) linear controllers. 
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Fig. 6  Responses of the terminal voltage for a sudden increase in mechanical power, 

∆Pmo=0.45 at t = 6 s; (solid) proposed controller; (dot) linear controllers. 
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