
Terminal application middleware for the interoperability among
telematics services

Moon-Soo Lee, Jong-Woo Choi, Myung-Jin Lee, Kwon Oh-Cheon

Telematics S/W Platform Team, Telematics•USN Research Division
Electronics and Telecommunications Research Institute(ETRI)

161 Gajeong-dong, Yuseong-gu, Daejeon
KOREA

Abstract: Telematics offers automobile drivers with various and useful information services from telematics
service provider (TSP) centers through a terminal in vehicle which is installing wireless communication devices
such as CDMA, GSM, DSRC, etc. However, a vehicle environment, which telematics service is used, has poor
surroundings in the large temperature variation and noise. Because of these conditions, Telematics terminals were
developed with relative importance in stability itself more than the interoperability for the internal software
circumstances. Therefore, software in the terminals has a lot of dependencies on its hardware conditions and the
interoperability among contents can not be guaranteed any more.
This paper introduces an application middleware for telematics terminals which was developed as a kind of
telematics technology development project. The middleware based on open standard of JAVA technology can
make operation among contents over itself. Because of providing standard interfaces of the middleware, it can
make an easy to develop telematics services.

Key-Words: - Telematics, Terminal, Middleware, Platform, TSP, Vehicle

1 Introduction

Expansions of road can make interchange among
areas which is isolated at the past. As a lot of
information is shared through inter-communication of
those areas, it is gradually progressed as a high
information society. Though vehicle is a spot which
many people are using and killing their times, it was
relatively isolated place far from the Internet called
with high information road. However, with the help of
the advance of embedded systems and mobile
communications such as CDMA, the usability of
vehicle is increased in the mobile environment
gradually. In addition, it is required to the high quality
of telematics services.
Recent telematics terminal is designed to have
robustness against high temperature and noises in car.
It is built up an embedded system with 6-inch screen
size and similar type of AutoPC. But services and
contents of terminal were inevitable to be redeveloped
even though they were made in the same company.
Because each contents in the terminal is optimized in
its hardware. They also have to download their
dedicated contents from telematics service center
(TSP).
OSGi (Open Service Gateway Initiative) offers a basis
framework which has core functions of registration,

discovery, and execution of services to support
various devices in home or vehicle. OSGi ensures the
interoperability between services overt its framework.
And it puts up an environment which can be deployed
and executed service-oriented applications based on
component model.
In this paper introduces a telematics application
middleware, which supports to reduce the term and
cost in the development of telematics contents because
of increasing their reusability and guaranteeing their
compatibility. As it adopts an open standard
technology of JAVA language, the contents are able to
applicable independent to the hardware and operating
systems of the terminal.
The rest of this paper is structured as follows: Section
2 provides an overall architecture of terminal S/W
platform and introduces OSGi framework and AMI-C
specification, Section 3 describes to the terminal
application middleware based on AMI-C. Finally,
Section 4 concludes the paper.

2 Terminal S/W platform architecture

Embedded software implemented in the initial
telematics terminal was developed and optimized in
low performance hardware limited resources. As
telematics terminals as well as services are various, the

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp139-142)

interoperability between the services is needed
gradually.
Fig. 1 shows the overall architecture of telematics
terminal platform. The basis structure of the platform
has embedded operation system such as WinCE .NET,
embedded linux over the hardware of the terminal and
JAVA virtual machine exists on it. Middleware
represented in this paper is operating over the JVM
following the J2ME specification. It is comprised of
OSGi framework originally targeted in digital home
gateway and AMI-C specification.
A standard telematics API provided terminal S/W
platform contained the middleware helps service
developers to use a uniform program interfaces for the
devices in the vehicles. Applications to be developed
in this way can be made to the emergency service,
remote automobile monitoring service, PIMS, etc. The
services will be deployed and executed over the
telematics terminal S/W platform.
In this chapter will describe the OSGi and AMI-C
specifications that are the core of the terminal S/W
platform.

Fig. 1 Telematics Terminal S/W Platform

2.1 OSGi Specification
OSGi is based on the component architecture like
CBD (Component Based Development) [1]. There are
various types of applications called bundle and are
able to use their interfaces only after they are installed
and published. And it supports dynamic binding
between services over its platform.
OSGi consists of OSGi basis framework and some
services such as System Bundle, Package Admin, IO
Connector, and so on[2][4]. OSGi basis framework is
able to register, search and manage the life-cycle of
bundles that are the form of JAR packages. There are
six states of bundles in their life-cycle; INSTALLED,
RESOLVED, STARTING, STOPING, ACTIVE and
UNINSTALLED.

OSGi framework can kill bundles in the run-time
anytime but operate and service other bundles that
have no dependencies with it continuously.

2.2 AMI-C Specification
AMI-C allows a new digital service to develop
telematics services through constructing integrated
multimedia device architecture for the automobile
information and entertainment system among all types
of vehicle in the world. It announced the Release 1
about the overall viewpoint and the conceptual vision
to the framework of AMI-C architecture. And then
Release 2 introduced a reference implementation to
validate the conceptual model, guideline, and
specification of network interface in vehicles.
AMI-C API is based on the OSGi framwork and a kind
of service implemented the form of OSGi bundle. The
API is divided to core services, extension services, and
application services. Extension services define address
book, telephone book and personal profile.
Application services define the off-line navigation.
Finally, core services are like as bellows.

 OSGi Service Platform
 Application Execution Management
 Language Management
 Persistent Storage Management
 Vehicle Service Interface
 HMI API

3 Terminal application middleware
based AMI-C
 The overall structure of embedded S/W platform for
telematics terminals we introduce is illustrated in Fig.
2.

Fig. 2 Telematics Terminal Application Middleware

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp139-142)

The core of the S/W platform is a terminal application
middleware implemented in accordance with AMI-C
specification. Therefore, the middleware takes
advantage of OSGi basis framework as an engine to
execute applications in distributed environment. The
framework includes some functions that are software
life-cycle management, resource management, and
service management etc. The aim of these functions is
to manage JAVA application called OSGi bundle. In
addition, the middleware offers vehicles dedicated
execution environment which is comprised of various
managements such as application execution, persistent
storage, communication, security and vehicle service
interface.

3.1 Vehicle service interface (VSI)
Terminal information manager collects the states of
vehicle, personal information of passenger as well as
driver, and terminal data of itself. It has an important
role as a gateway between telematics application
middleware and internal devices of automobile.
According to car makers, there are various models of
cars that are used in different protocols and types of
devices. Therefore, consistent interfaces or protocols
are required to construct a middleware that provides
application developers to implement telematics
applications.
AMI-C defined uniform interfaces through with a
module called vehicle service interface (VSI). VSI can
monitor the current status of vehicle and control
actuators like open-door lock in automobile. This
interface is can either acquire internal states or issue a
command through communication manager and ECUs
in automobiles. Therefore, it is closely connected to
terminal information manager to collect or control
vehicle. In case some problems such as the overflow
of engine temperature arise, the interface notifies the
information to middleware quickly. Fig. 3 shows the
relationship between the core modules of telematics
terminal application middleware and other
sub-systems something like OSGi framework,
terminal information manager, ECUs of vehicle, etc.
VSI consists of common message sets that are
described a formal language called Abstract Syntax
Notation One (ASN.1). Therefore, the messages are
network neutral and can applicable to various types of
cars with creating a profile like mapping table easily.

Fig. 3 The relationship with external systems

3.2 Application execution manager
Application execution manager is tightly coupled with
OSGi framework and manages telematics application
and OSGi bundles installed over terminal S/W
platform. As vehicle events are received from terminal
information manager, application execution manager
can handle special applications which are related to
emergency states such as vehicle failure and accident.
Application execution manager execute
authentificated applications through security as well as
persistent storage manager, and prevent terminal from
non-authentificated applications or virus.
Fig. 4 describes a series of process to handle
emergency state of vehicle in terminal. Firstly,
Terminal information manager managing all
information generated an event of vehicle states. And
then onUpdate() method in application execution
manager automatically is invoked. It reads the state of
vehicle through getVehicleState() method in the
terminal information manager and control the run
level of applications which are operating in the
middleware according to the returned state of vehicle.
The run level represents a priority related to the
execution of application. Applications that is related to
monitoring the state of vehicle, controlling vehicle
devices as well as outer communication modules like
CDMA, and notifying emergency calls can have a
high priority. Therefore, if emergency case arises,
applications with a low priority will be automatically
stopped to get maximum resources in the terminal.
And emergency services which have high priorities
are invoked and notify the telematics service
center(TSP) as soon as possible.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp139-142)

Fig. 4 Sequential diagram for the emergency state

3.3 Persistent storage manager
Persistent storage manager queries and manages the
space of storage in the terminal. It also saves data
through application execution manager and security
manager and protects from non-authentificated
applications.

3.4 Security manager
Security manager provides the basic security functions
in S/W middleware such as user authorization,
execution right, and so on. It also provides the security
of personal information from the function of encoding
mechanism through the close interconnection with
persistent storage manager and protects from hacking
through the network with communication manager.

3.5 Communication manager
Communication manager is managing various
connections of networks such as CDMA, Bluetooth,
CAN, MOST, Serial Port utilized in terminals of
vehicle. And Communication manager is compatible
and extensible IO Connector interface in OSGi
framework. Its interface can be modified and used
easily to other types of communication by changing
the parameters of URI (Unified Resource Identifier).
At presents, the result of this project is supported to
CDMA, Bluetooth and Serial communication. And
CAN as well as MOST will be developed.

4 Conclusion
Recently, with the help of the technique development
of the mobile communication such as CDMA and
embedded system, the practical usage of telematics

terminal in the mobile environment have been
enlarged gradually. At the same time, the necessity
and demand for telematics service as well as contents
also have been desired so much. But the reusability of
the contents comes to fall off because embedded
terminal system is optimized in terms of the limited
computing power and resources. And the duplication
of developments is inevitable and the interoperability
among contents and services can not be guaranteed.
Currently, the needs of the standard interfaces of
telematics S/W platform increase in developing
software for the telematics terminal. Therefore, we
implemented a terminal application middleware which
played the essential role for the S/W platform.
The middleware of this paper adopted OSGi
framework to manage consistently for the all devices
connected with the vehicle. In addition, it supports the
management of application in the special environment
such as vehicles and provides standard programming
interfaces to develop telematics contents and services
easily.

References:
[1] Open Services Gateway Initiative, "OSGi Service

Platform Specification", Release 3,
http://www.osgi.org, March 2003

[2] Automotive Multimedia Interface Collaboration,
"AMI-C Software API Specification-Core APIs",
Release 2, http://ami-c.org, 28 Apr. 2003

[3] Hall R. S., Cervantes H., "An OSGi
Implementation and Experience Report",
Consumer Communication and Networking
Conference(CCNS 2004), 5-8 Jan. 2004,
pp.394~399

[4] Joong H. K.; Sung S. Y."Context-aware
application framework based on Open Service
Gateway", Proceedings. ICII 2001, Vol. 5, 29 Oct.
2001,pp.200 - 204

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp139-142)

