Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp104-109)

Extremes of quasi-independent random fields

and clustering of high values

L. PEREIRA and H. FERREIRA
Department of Mathematics

University of Beira Interior
6200 Covilha
PORTUGAL

email: helena@noe.ubi.pt

Abstract: - Random fields on Z%, with long range weak dependence for each coordinate at a time
and local restrictions on clustering of high values, behave like an i.i.d. random field. Then, for
these random fields, the probability of no exceedances of high values can be approximated by
exp(—7), where 7 is the limiting mean number of exceedances. An example is a nonstationary

Gaussian field under a Berman’s type condition on their correlations.
Random fields usually present clustering of high values. Under smooth oscillation conditions, we
compute the clustering measure extremal index, from the limiting mean number of crossings of

high levels.
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1 Introduction
Let X = {Xu}a>1 be a random field on Zfll_,

where Z 4 is the set of all positive integers and
d > 2. We shall consider the conditions and re-
sults for d = 2 since it is notationally simplest
and the proofs for higher dimensions follow anal-
ogous arguments.

For a family of real levels {un; : 1 < n}y>s
and a subset I of the rectangle of points R, =
{1,....n1} x {1,... ,n2}, we will denote the
event {miel Xi < upi} by {Mp(I) < u} or sim-
ply by {M, < u} when I =R,,.

For each « = 1,2, we say the pair I and J is
in §;(/) if the distance between II;(I) and IT;(J)
is great or equal to [, where I1;, ¢« = 1,2 denote
the cartesian projections. The distance d(I,J)
between sets T and J of Zi, d > 1, is the min-

imum of distances d(i,j) = maxz{|is — js|,s =
I,...,d},ieTand jed.

Suppose that X satisfies a coordinatewise-
mixing type condition as the A(uy)-condition
introduced in [9], which exploits the past and
future separation one coordinate at a time. Let
F be a family of indexes sets in R,. We shall
assume that there exist sequences of integer val-
ued constants {k,, }, {l,,}, ¢ = 1,2 such that, as
n = (n1,ny) — 0o, we have

kn Loy, Koyl

kn, . ky, , ,—=2 0 1
(ki hrs) = 00, (22, Z202) 0 (1)

and (kn, A1, kp, knyAy) — 0, where A; are the
components of the mixing coefficient defined as
follows:

Ay = sup|P(My (L) < u, My(1y) <u)—



P(My(T) < u) P(Myn(T5) < u),

where the supremum is taken over pairs I; and

12 in Sl(lnl)ﬂ}-,
Ay = sup| P(My(I) < u, My(Iy) < u)—

P(My(T) < u) P(Myn(T5) < u),

where the supremum is taken over pairs I; and
I, in Sy(l,,)NF. We say then X satisfies the
D(uy;) condition over F.

In fact, we could consider a slightly weaker
condition, as in [9], if we where concerned only
with stationary random fields.

We prove, in the next section, that the max-
ima over disjoint rectangles behave asymptot-
ically as independent maxima. In section 3,
we introduce a local dependence condition that
avoids clustering of exceedances of up;. That
condition and the coordinatewise long range de-
pendence lead to a Poisson approximation for
the probability of no exceedances over R,. The
results are applied to a nonstationary Gaussian
random field. In the last section we discuss the
behaviour of the maxima when clustering of high
values of X is allowed but we restrict the lo-
cal occurence of two or more crossings of the
high levels uy ;. The smooth oscillation condi-
tion considered enables to compute a clustering
measure, called extremal index, from the lim-
iting mean number of crossings. We illustrate
these results with a 1-dependent random field.

2 Asymptotic independen-
ce of maxima

Under the coordinatewise-mixing D(up;)-
condition we have the asymptotic indepen-
dence for maxima over disjoint rectangles
of indexes. In the following F,... denotes
max{P(X; > un;): 1 < n}.

Proposition 2.1 Suppose that the random field
X satisfies the condition D(upn;i) over F such
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that T1CIANT €F)= T €F and for {un;:1 <
N}n>1 such that

(2)
IfV, ,=LxJ.,,r=1,... k,y,p=1... k.,

are disjoint rectangles in F, then, as n — oo,

PO\ M(V,,) < u)

T7p

{mnzfmam}nzl 18 bounded.

—[[PM(V.,;) <u)—0.

Proof: From (1) and (2), for the purpose of
the above convergence we can assume that
4(V,,) > 1, or IIy(V,,) > [,,. If all the
pairs of rectangles V, , are in Si(/l,,)US2(l,,)
then the result follows inductively from the con-
dition D(un4). On the contrary, we can elimi-
nate [,, columns or [, rows of indexes in V., in
order to obtain VI CV,, r=1,... k,,p=
1,...,kn,, to which we can apply inductively
the condition D(up;). O

3 Restriction on clustering
of high values

Restrictions on clustering of high values for sta-
tionary and non-stationary time series have been
considered in the form of D' condition intro-
duced in [6] ( see also [4]). We shall here intro-
duce a D' condition tailored for random fields
not necessarily stationary.

Let E(un;) denote the family of indexes sets I
such that

1
P(X; ni) <
> P> ) < e

iel

Definition 3.1. The condition D'(uy;) holds
for X if for each I €€(un;) we have, as n —

oo,

kn, K, Z P(X; > tni, Xj > unj) — 0.
i,jel
As for i.i.d. random fields, under D'(uy ;) and
D(un;) over E(unj), for n large, P([ o, Xi <
uni) can be approximated by the limiting mean
number of exceedances over R,,.



Proposition 3.1 Suppose X satisfies (2),

D'(uni) and D(uni) over E(uni). Then, as
n — oo, it holds
ﬂX <up) — e 7, 7>0,

if and only if

D P(Xi > ung) = 7> 0.

i<n

Proof: We will built &, k,,, rectangles in &(uy ;)
as follows. First split Ry, in k,,, quasi-rectangles
I' ={s,o1+ 1} x{t7_, +1 ;nat U {s,—1 +
2, sl ng U s 1 x {1, <
nab, v =0,...,ky, so =0 = t5, with {¥ maxi-
mally choosen such that

> P(Xi > uny) g—ZPX > tng).
iel’, n1 i<n

Let I, = {s,-1 +2,...,s.} x {l,... ,ny} and

now we split each rectangle I, in &, k,, quasi-

rectangles V', , = {s7 _; +1,... .8} x{t,-1 +
1}U{ST_1—|—1, ce ,ST}X{tp_1+2, Ce ,tp}U{Sr_1+
Loooysi Ssppx{t+ 1, p=1,... kny, to =

0, 5:70 = 8,_1, with 5:7p maximally choosen such

that
1
‘ Z P(Xl > un,i) S ]{inlk‘n2 ZP(XI > uﬂ7i)'
ieViyp i<n
Let V,, ={s,o1+1,...,s b x{t,m1+2, ... ,t,}.

Then, by (1) and (2), it is sufficient to prove that

P(YM(V,,) Su) = e, 70,
r,p

if and only if
Z Z (Xi > uni) = 7 >0.
p 1EVrp

This follows from Proposition 2.1, condition

D'(un;) and the following relations:

[T Pr(v u) =
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exp(—u o) L1 = P(M (Vo) < u)))

e:z;p(

If X is stationary, in the above proof we can
consider k,, k,, rectangles of [;Tll][k%] indexes
and the result follows by assuming uy; = up, 1 <
n, and condition D’'(up;) as

>

IKUELEED

knj kng

P(X1 > tun, X5 > up) — 0,

ning

as n — oo.

Let X be a Gaussian random field with zero
means, unit variances and correlations rjj, 1 >
1, ) > 1. We will assume that

rigl < p(iv—illia—ia) (3)
for some {pn < 1}n>1 satisfying

(4)

a generalization of the condition

pnlog(ning) — 0, as n — oo.

This 1s
rnlog(ning) — 0 considered in [1] for station-
ary Gaussian random fields.

We present a class of Gaussian random fields
for which the above proposition can be applied
and then, from Z(l — ®(up;)) = 7 >0, where

i<n
® denotes the distribution function of standard
Normal distribution, we get the convergence of
P(M, < u). The result is a generalization of
Theorem 6.1.3 in [7] and for details of the proof
see [10].

Proposition 3.2 Let X be a Gaussian random
field such that (3) and () hold and {up; : 1 <
n}tn>y1 satisfying (2) and Ay = min{uy; 1 i <
n} > c(log(nlng))l/2 for some constant ¢ > 0

If for each I €€(unj;),

(kn1 kn2)1/2 1 v
[ TRRERTL) |



is bounded, for some {ug')}}nzl salisfying
ning(l — q)(ufly))) — v > 0, then X salisfies
the conditions D(un;) over E(uni) and D'(unj;).

4 Restriction on crossings
of high levels

We discuss now the limiting distribution of
maximum when, in addition to coordinatewise-
mixing condition, we restrict the local path be-
haviour with respect to the number of crossings
of the high levels uy ;.

Since the natural notion of crossing at i =
(i1,12) would get in consideration the values of
the random field over the eight neighbours of i,
id est, over the points j such that d(i,j) = 1,
then by taking 3 ({i}) = {j:d(i,j) =1}, we

say that X has a crossing at 1 if occurs
= {Xi <ung, | Xj>ungh
ies{i}h)

Using the ideas of [§], in combination with
[5] and [2], to avoid clustering of crossings by a
nonstationary random fields, we would assume,
for each rectangle 1 satisfying

> P(B » P(B;

iel i<n

that it holds

knlk’@ ZP 1117

ijel

nl n2

—>O.

n—oo

However, we verified that an i.i.d. random field
doesn’t satisfy the previous condition for nor-
In fact, for {un},s,; such that
ninyP (X1 > uy) — 7, as n — oo,

I:{l,...,{:ﬁ}} x{l,...,{k%}}wehave

S P < e P

iel n2 i<n

b kiny » P (

ijel

malized levels.
and

and
> kp, kn,
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(2] = D[] = DP(Xy > un) P* (X1 < un)

which tends to 7, as n — oco. By an analogous
reasoning with subsets of the boundary (3 ({i})
with more than one element, we conclude that
we can only restrict the number of crossings in
one of the eight directions from each i € L.

Since the only direction that joins the no-
tion of past and future along both coordinate
axes, simultaneously, is the diagonal direction
from 1 to 1 + 1, we will here consider a condi-
tion which restricts the local occurence of two or
more of these diagonal crossings, id est, a condi-
tion that restricts the local occurence of two or
more events Biy = (Xi < tuni, Xit1 > Unit1) -

Let C(uyn;) denote the family of indexes sets I
such that

> P(Bin)

iel

ZP in) -

i<n

_knk

Definition 4.1. The condition D" (un;) holds
for X if for each T € C(un;) we have

knikiny Y P (Bin, Bjn) — 0.

“ n—oo
ijel

By using Bin instead {X; > wn;} and
D" (un;) instead of D’ (un;) in the proof of
the Proposition 3.1 we get the next result.
Therefore we omit the similar proof and only
remark that, under the conditions (1) and (2),
we can suppose that, for each rectangle V, , in
the partitions that arise for R,, the variables
X; with indexes in the basis and in the left side
of V, , exhibit values below the correspondents
levels uy ;. Asymptotically, the probability of
the complementar of that event is negligible.
So, over each rectangle V,, we have an ex-
ceedance if and only if it occurs some event B; .

Proposition 4.1. Suppose that the random
field X verifies conditions (2), D" (un;) and
D (uni) over C(un;). Then, as n — oo,

P(ﬂ X; < ’Mn,i) —e Vv >0,

i<n
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if and only if

Y P(Bin) v >0

i<n

If X is stationary the result follows by assum-
Ing Uni = Un, 1 < n, and condition D" (uy) as

i<([#5][75])
Weaker local dependence conditions can be
consider as in [3].

Accordingly [1], the stationary random field X
has extremal index 6 € [0,1] if, for each 7 > 0,

there exists {ug)}nzl such that, as n — oo,
ning P(X1 > ugf)) — 7 and P(M, < uff)) —
exp(—07).

P (B, Bjn) — 0.

n—oo

ning

If X is an i.i.d random field or a station-
ary random field satisfying the conditions of the
Proposition 3.1 then the extremal index equals
to 1.

For nonstationary random fields the extremal
index can be defined in a similar way:

—loglimy P(

T

i<n Xi S uf’:l))

0(7) =

where 7 = limy Y ;. P(X; > uf:l))
Here the extremal index may depend on 7, as
pointed out examples in [4].

The following result gives a convenient exis-
tence criterion of the extremal index, assuming
D" (un;), and follows immediately from Propo-
sition 4.1.

Corollary 2.1. If the random field X salis-
fies (2), D" (uni) and D (un;i) on Cluni) with
E:i), then there exists 0(7) if and only if
there exists

Uni = U
v=lim Z: P (Bin)

and, in this case, it holds

(r) = =.

The clustering measure extremal index can be

considered for sub-fields of X. Let {I,} 5, be
an increasing sequence of sub-rectangles of Ry,.
If for each 7 > 0 there exists a family of levels

{00],1 € Ta}usa such that

Y PXi>ol)) ——

n—oo
iel,
and
- (7)
. < ) _
P(Q X; < vn’l) n—>—oo> exp (—07),

we say that X has extremal index 6 owver
UnZl In'

In general, we can’t compare the extremal in-
dexes over regions with the extremal index of
the random field since the normalized levels are
not, in general, coincident.

We illustrate the results with a simple 1-
dependent random field defined as follows. Let
Y = {Ya},,; be an ii.d. random field and
{tun},s, such that niny P(Xy > up) — 7.

Consider X = {Xp},5, with X;j =
Xit1i) = X4y = Y and Xjpp =
mazx {Yi, Yii41.2)5 Y(z'l,z'2+1)} , for each

1=(i1,12) = (2k+ 1,25+ 1), k,s > 0.

The nonstationary random field X satisfies
D (uyn) and D" (uy) conditions and has extremal
index 6 = %.

For instance, for the region |J +; In with I, =
{i:91 <npip € {1,2}}, n> 1, we find 6y = é.
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