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Abstract: - In this paper we present the parallelization process of the AES algorithm (Rijndael) along with the 
description of exploited parallelization tools. The data dependences analysis of loops and appropriate loop 
transformations were applied in order to parallelize the sequential algorithm. The OpenMP standard was chosen for 
representing the parallelism of the AES algorithm. Speed-up measurements for a parallel program are presented. 
 
Key-Words: - AES, parallelization, data dependences analysis, loop transformation, OpenMP, shared-memory 
multiprocessors 
 
1   Introduction 
In addition to security level, the cipher speed is the most 
important feature of cryptographic algorithms. It is well 
known that by the same security level even a little 
difference of the cipher speeds may cause the choice of 
the faster cipher. Therefore, it is so important and useful 
to enable the use of symmetric multiprocessors (SMP) 
for running in parallel these algorithms. In this paper we 
propose a software approach based on transformations of 
a source code written in C representing the sequential 
AES algorithm. The design of parallel algorithms is 
connected with the current world tendency towards the 
hardware implementation of cryptographic algorithms, 
because it is often based on parallel algorithms. The 
main contribution of this paper is to present the 
parallelization process of the AES algorithm along with 
the description of exploited parallelization methods and 
speed-up measurements. The paper is organized as 
follows. In section 2, we briefly review the AES 
algorithm. Section 3 contains a brief description of 
parallelization tools that were applied. In section 4, we 
describe in detail the parallelization process of the AES 
algorithm. In section 5, we present experimental results 
regarding the application efficiency of a parallel 
algorithm. 
 
 
2   AES Algorithm 
Advanced Encryption Standard (AES) is a NIST 
cryptographic algorithm standard (FIPS PUB 197). It 
uses the Rijndael symmetric block cipher algorithm 
developed by Joan Daemon and Vincent Rijmen. The 
Rijndael algorithm can operate on block lengths of 128, 
192 or 256 bits and key lengths of 128, 192 or 256 bits. 
It contains a various number of rounds: 10, 12, and 14 
depending on key and block lengths. The Rijndael 
algorithm is a substitution-linear transformation cipher 

(not requiring a Feistel network) that uses for each round 
triple discreet invertible uniform transformations, called 
layers: Key Addition Transform, Non-linear Transform 
and Linear Mix Transform. Operations in Rijndael are 
defined at byte level or in terms of four-byte words. 
Encipherment and decipherment processes require the 
use of several iterative operations so it underlies parallel 
processing.  
     To encrypt or decrypt more than one block, there are 
five official modes of the AES: ECB, CBC, CFB, OFB 
and CTR [1]. The detailed description of the algorithm is 
contained in the official Rijndael paper submitted to the 
NIST for consideration [2] or in the NIST publication 
[3]. 
     Nowadays, AES is a standard for most government 
agencies, and is widely used in many applications due to 
such features as: high security level, high speed and 
appreciable facilities of software and hardware 
implementations. 
 
 
3   Parallelization Tools 
In order to parallelize the AES algorithm we have 
applied the Petit program in order to find data 
dependences in loops and the OpenMP API to present 
parallelized source code. 
 
 
3.1 OpenMP API 
The OpenMP Application Program Interface supports 
multi-platform shared memory parallel programming in 
C/C++ and Fortran on all architectures including Unix 
and Windows NT platforms. OpenMP is a collection of 
compiler directives, library routines and environment 
variables that can be used to specify shared memory 
parallelism. OpenMP directives extend a sequential 
programming language with Single Program Multiple 
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Data constructs, work-sharing constructs, 
synchronization constructs and make possible to operate 
with shared data and private data. An OpenMP program 
begins execution as a single task called master thread. 
When a parallel region is encountered, the master thread 
creates a team of threads. The statements within the 
parallel region are executed in parallel by each thread in 
the team. At the end of the parallel region, the threads of 
the team are synchronized. Then again only the master 
thread continues execution until the next parallel region 
will be encountered. It is necessary to find remedy for all 
problems connected with programming restrictions on 
parallel processing to build a valid parallel code [4], [5]. 
 
 
3.2 Petit 
Developed at the University of Maryland under the 
Omega Project and freely available for both DOS and 
UNIX systems, Petit is a research tool for analyzing 
array data dependences. Petit operates on programs in a 
simple Fortran-like language and provides indispensable 
information about data dependences that occur in the 
analyzing loop [6], [7].   
 
 
4   Parallelization Process of AES 
In order to parallelize the AES algorithm in the ECB 
mode, we have used Rafael R. Sevilla’s implementation 
of the Rijndael cipher written in C and presented as a 
Perl module [8]. This choice makes possible to perform 
efficient parallelization in view of some advantageous 
features of that source code (a high clarity, enclosing the 
most of computations in iterative loops, a little number 
of used functions). In order to enable enciphering and 
deciphering the whichever number of data blocks, we 
have created the new functions, the rijndael_enc() for  
the encryption process and the rijndael_dec() for the 
decryption process, by analogy with similar functions 
included in the C source code of cryptographic 
algorithms (the des_enc(), the des_dec(), the loki_enc(), 
the loki_dec, the idea_enc(), the idea_dec(), etc.) 
presented in [9]. 
     In the next subsection, we introduce data 
dependences types before we begin discuss the 
parallelization process of the AES algorithm. 
 
 
4.1 Data Dependences 
There are the following types of data dependences that 
occur in iterative loops [10], [11]:  
• Data Flow Dependence- indicates that write-before-

read ordering that must be satisfied for parallel 
computing. The following loop yields such 
dependeces: 

      for (int i=0; i<n; i++)     
         a[i] = a[i-1]; 
• Data Antidependence indicates that read-before-

write ordering should not be violated when 
performing computations in parallel. The loop 
bellow produces such dependeces: 

  for (int i=0; i<n; i++)     
         a[i] = a[i+1]; 
• Output Dependence indicates a write-before-write 

ordering. The following loop produces such 
dependeces: 

     for(int i=0; i<n; i++)     
        a[0] = a[i]; 

 
     All of the above loops cannot be executed in parallel 
in such a form, because results generated by parallel 
loops would be not the same as those yielded with the 
sequential loops. Thus, it is necessary to transform these 
loops so as to eliminate Data Antidependences and 
Output Dependences (Data Flow Dependences cannot 
be avoided and limit parallelism).  
 
 
4.2 Parallelization strategy 
The data input of the parallelization process is the well-
optimized sequential AES algorithm [8]. 
     The process of the AES algorithm parallelization can 
be divided into the following stages: 
a) finding the most time-consuming functions of the 

AES algorithm; 
b) making preliminary transformations of the most 

time-consuming loops; 
c) data dependences analysis of the most time-

consuming loops; 
d) removal of data dependences (when possible); 
e) constructing parallel loops in accordance with the 

OpenMP API; 
f) verification of a parallelized source code. 
     The result of the parallelization process is a 
parallelized AES algorithm. 

 
 

4.3 The most time-consuming functions 
We have carried out experiments with the sequential 
AES algorithm that encrypts and then decrypts 10 
megabytes plaintext in order to find the most time-
consuming functions including no I/O functions. We 
have discovered that such functions are the 
rijndael_enc() and the rijndael_dec() functions presented 
bellow: 
 
4.3.1   The rijndael-enc() function  
void rijndael_enc(RIJNDAEL_context *ctx,  

       UINT8 *input, int inputlen, UINT8 *output) 
{ 
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  int i, nblocks; 
  nblocks = inputlen / RIJNDAEL_BLOCKSIZE; 
    for (i = 0; i<nblocks; i++) { 

rijndael_encrypt(ctx, input, output); 
input+= RIJNDAEL_BLOCKSIZE; 
output+= RIJNDAEL_BLOCKSIZE; 

    }  
} 

 
4.3.2   The rijndael-dec() function 
void rijndael_dec(RIJNDAEL_context *ctx,  

       UINT8 *input, int inputlen, UINT8 *output) 
{ 
  int i, nblocks; 
  nblocks = inputlen / RIJNDAEL_BLOCKSIZE; 
    for (i = 0; i<nblocks; i++) { 

rijndael_decrypt(ctx, input, output); 
input+= RIJNDAEL_BLOCKSIZE; 
output+= RIJNDAEL_BLOCKSIZE; 

    }  
} 
 

 
4.4 Parallelization process of the most time-

consuming loops 
The most time-consuming loops are included in the 
rijndael_enc() and the rijndael_dec() functions, thus their 
parallelization is critical for reducing the total time of the 
parallel algorithm execution. Taking into account the 
strong similarity of these loops (there is the only 
difference between them: the loop included in the 
rijndael_enc() function calls out the rijndael_encrypt() 
function, the second one calls out the rijndael_decrypt() 
function; the rijndael_encrypt() and the 
rijndael_decrypt() functions are very similar), we discuss 
only the parallelization process of the 4.3.1 loop 
(however, this analysis is valid also in the case of the 
4.3.2 loop).  
     In order to apply the data dependences analysis of the 
4.3.1 loop we have to put the body of the 
rijndael_encrypt() function in this loop. 
     Next, we have to remove existing data dependences 
by making the following transformations: 
a) insert in the beginning of the loop body the 

following two statements: 
“plaintext = &input[RIJNDAEL_BLOCKSIZE*i];” 
“ciphertext=&output[RIJNDAEL_BLOCKSIZE*i];” 

b) remove from the end of the loop body the following 
two statements: 
“input+= RIJNDAEL_BLOCKSIZE;” 
“output+= RIJNDAEL_BLOCKSIZE;” 

c) make the privatization of the following eight 
variables: 
“i”, “plaintext”, “ciphertext”,  “r”, “j”, “t”, “e”, 
“wtxt”. 

     The source code of the loop transformed in 
accordance with the above markings is suitable to apply 
the following OpenMP API constructs: parallel region 
construct (“parallel” directive) and work-sharing 
construct (“for” directive). This permits us to represent 
the parallelization of the analyzed loop. 
     The rijndael_enc() function with the parallelized 
most time-consuming loop has the following form (in 
accordance with the OpenMP API): 
 
void  
rijndael_enc(RIJNDAEL_context *ctx,  

       UINT8 *input, int inputlen, UINT8 *output) 
{ 
  int i, nblocks; 
  const UINT8 *plaintext; 
  UINT8 *ciphertext; 
  int r, j; 
  UINT32 wtxt[4], t[4], e; 
  nblocks = inputlen / RIJNDAEL_BLOCKSIZE; 
#pragma omp parallel private (i, plaintext, ciphertext , r,   

j, t, e, wtxt) 
#pragma omp for 
for (i = 0; i<nblocks; i++) { 
    plaintext=&input[RIJNDAEL_BLOCKSIZE*i]; 
    ciphertext = &output[RIJNDAEL_BLOCKSIZE*i]; 
key_addition_8to32(plaintext, &(ctx->keys[0]), wtxt); 
     for (r=1; r<ctx->nrounds; r++) { 
         for (j=0; j<4; j++) { 
               t[j] = dtbl[wtxt[j] & 0xff] ^             

ROTRBYTE(dtbl[(wtxt[idx[1][j]] >> 8) & 0xff]^             
ROTRBYTE(dtbl[(wtxt[idx[2][j]] >> 16) & 0xff] ^ 
ROTRBYTE(dtbl[(wtxt[idx[3][j]] >> 24) & 0xff]))); 
         }    
key_addition32(t, &(ctx->keys[r*4]), wtxt); 
    } 
for (j=0; j<4; j++) { 
                        e = wtxt[j] & 0xff; 
                        e |= (wtxt[idx[1][j]]) & (0xff << 8); 
                        e |= (wtxt[idx[2][j]]) & (0xff << 16); 
                        e |= (wtxt[idx[3][j]]) & (0xff << 24); 
                        t[j] = e; 
                } 
for (j=0; j<4; j++)  
        t[j] = SUBBYTE(t[j], sbox); 
key_addition32to8(t,&(ctx->keys[4*ctx->nrounds]), 

ciphertext); 
   }  
} 
     where “#pragma omp parallel” defines the beginning 
of the parallel region, and “#pragma omp for” specifies 
that all the iterations of the associated loop can be 
executed in parallel. 
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5   Speed-up Measurements 
In order to study the efficiency of the parallel code, we 
used the computer with the following features:  
- 64 x Itanium2 1.5GHz (SGI Altix 3700) (we use up to 
sixteen processors for the program execution),  
- the Intel® C++ Compiler ver.9.0 (that supports the 
OpenMP 2.5 API).  
     The results received for the block length of 128 bits, 
the key length of 256 bits and the plaintext of the size 
about 17 megabytes are shown in Table 1. 
 

                    Speed-up No. of  
processors 

No. of 
threads Encryption Decryption Total 

      1      1     1,000     1,000 1,000 
      2      2     1,957     1,996 1,600 
      4      4     3,112     3,285 1,941 
      8      8     5,274     6,829 2,222 
    16    16     5,554   12,357 2,300 

 
Table 1- Speed-up measurements of the AES algorithm 
 
     In order to verify the measurements that were 
performed, we used several plaintext sizes from              
1 kilobytes to 20 megabytes and the speed-ups were very 
similar for all the cases. 
     The total running time of the AES algorithm consists 
of the following time-consuming operations: 
a) data reading from an input file; 
b) data encryption; 
c) data decryption; 
d) data writing to an output file (both encrypted and 

decrypted text). 
     The total speed-up of the parallelized AES algorithm 
depends considerably on the two major factors: whether 
the most time-consuming loops are parallelizable and 
the method of data reading and data writing. 
     The results confirm that the parallelized codes of the 
most time-consuming loops (placed in the rijndael_enc() 
and the rijndael_dec() functions) have sufficient 
efficiencies. 
     The block method of reading data from an input file 
and writing data to an output file was used. The 
following C language functions and block sizes were 
applied: the fread() function and the 16-bytes block for 
data reading and the fwrite() function and the 512-bytes 
block for data writing. The optimal sizes of the blocks 
were chosen via the appropriate number of tests with 
various block sizes. 
     In accordance with Amdahl’s Law the maximum 
speed-up of the whole AES algorithm is limited to 4.10, 
because the fraction of the code that cannot be 
parallelized is 0.244. This fraction is calculated as the 
quotient of the sum of the execution time of all 

unparallelizable operations divided by the execution 
time of the whole algorithm.  
     The difference between the speed-ups obtained for 
the encryption and the decryption processes and for eight 
and sixteen processors is due to the fact that during the 
decryption process (which is executed after the 
encryption process) data is stored in local memory. 
 
 
6   Conclusions 
In this paper, we describe the parallelization of the AES 
algorithm. The AES algorithm was divided into 
parallelizable and unparallelizable parts. We have shown 
that the iterative loops included in the most time-
consuming functions (responsible for the data blocks 
encryption and decryption) are fully parallelizable. In 
order to parallelize these loops it is necessary to make 
appropriate transformations of the body loops (described 
in the section 4.4) and to use the variable privatization 
technique. 
     The experiments carried out on the SGI computer 
with one, two, four, eight and sixteen threads show that 
the application of the parallel AES algorithm 
considerably boost the time of the data encryption and 
decryption. We believe that the speed-ups received for 
the most time-consuming loops are satisfactory. The rest 
of the time-consuming parts of code, contains I/O 
functions that are unparallelizable because the access to 
memory is, by its very nature, sequential. Hence, the 
total speed-up is less than that for the parallelizable part.  
The parallel AES algorithm presented in this paper can 
be also helpful for hardware implementations. The 
hardware synthesis of the AES algorithm will depend on 
the appropriate adjustment of the data transmission 
capacity and the computational power of hardware. 
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