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Abstract: In this paper, we study the order of convergence of the linear positive Beta operators by means 
of the Peetre-K functional and of  the functions from Lipschitz class. Furthermore we introduce a 
generalization of  r-th order of these operators and also investigate approximation properties of  them. 
Finaly we give an applications to differential equations. 
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1. Introduction 
The operators  
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are known as Beta operators, where 

]1,0[,...},2,1{ ∈=∈ xNn  and [ ]1,0Cf ∈  and 
(.,.)B  denotes the familiar Beta function. It is 

clear that Beta operators are linear and positive. 
From the well-known theorem of Korovkin [5], it 
is easily verified that 
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The order of convergence of Beta operators by 
means of modulus of continuity was investigated 
by Khan [3]. Some approximation properties of 
Beta operators may be viewed in [3], [1] and 
references therein. 

In this paper we first investigate the order of 
convergence of Beta operators, defined by (1), by 
means of the Peetre-K functional and of the 
functions from Lipschitz class. Next we give a 
generalization of thr −  order of these operators, 
and study their approximation properties. Finally 
we give an application to differential equations. 

 
 

2. Rates of convergence 

In the following, we first give the definition of the 
Peetre-K functional which we shall use. 
 Let [ ]1,02C  denote the space of  those 
functions f  for which [ ]1,0,, Cfff ∈′′′ , then the 
Peetre-K functional is defined as follows (see[2]): 

 
( )

[ ] [ ] [ ]{ },inf,
1,01,01,0

22 CnCCg
n ggffK δδ +−=

∈
 

 
where [ ] 0,1,0 ≥∈ nCf δ  and the norm in the space 

[ ]1,02C  is defined by  
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for [ ]1,02Cg ∈ . 
 In this section we give the rates of 
convergence of (2) by means of the Peetre-K 
functional and elements of Lipschitz class. 
 We note that Khan proved the rate of 
convergence of (2) using modulus of continuity as 
follows (see[3]): For  ]1,0[Cf ∈ , 
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where 1,
1

1
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+
= n

nnδ , and ( )nfw δ,  is the 

modulus of continuity of f . 
Taking maximum over [ ]1,0  on each side of the last 
inequality we obtain that 
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Now we have the following. 
 

Theorem 2.1. Let [ ]1,0Cf ∈ , then we have  
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nnδ   and ( )nfK δ,  is the 

Peetre-K functional. 
 

Proof. By the definition of the Peetre-K 
functional, we first take [ ]1,02Cg ∈ . Applying 
the operators nB  to the Taylor expansion of ( )sg  
at the neighborhood of x  we then get that 
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From  the last equation, it follows that  
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Easy calculations show that  
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Taking (4) and the last inequality into account, 
then it can be deduced that  
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Using the linearity of nB  we have the following. 
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Taking maximum of each side of the last inequality 
over [0,1] and using the fact that ( ) 1;1 =xBn , then  
we arrive at  
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Considering (5) in the last inequality, it then follows 
that 
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Taking infimum over [ ]1,02Cg ∈  from each side of 

(6) and by choosing ( )116
1
+

=
nnδ , theorem 

follows. 
 
 Recall that the well-known Lipschitz class 
of orderα , ( ) 0,10, >≤< MLipM αα , is defined 
as follows: For ]1,0[, ∈xt , 
 

( ) ( ) ( ){ }αα xtMxftffLipM −≤−= : . 
 
The following theorem gives the rate of convergence 
of the linear positive operator nB  by means of the 
Lipschitz class. 
 

Theorem 2.2.  Let 
( )αMLipf ∈ , then we have  
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1

1
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nnδ  which is the same as in (3). 

 
 Proof. Let ( )αMLipf ∈ . Since nB  are 
linear and monotone, then we have  
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by the definition of ( )αMLip ,  where       
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Applying Hölder’s inequality to the last integral, it 
readily follows that  
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where  )(, txnψ  is the function given by (7).                          
Taking maximum over [0,1] from each side of (8), 
we arrive at  
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nnδ  which proves the theorem. 

 
 
3. A generalization of  thr −  order of 

nB .   
Let [ ] ,,...2,1,0,1,0 =rC r denote the space of r -
times continuously differentiable functions defined 
on [0,1]. We introduce the following 
generalization, in the sense of Kirov (see[4]), of 
the linear positive operators NnBn ∈, . 
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where )(, txnψ  is the function given by (7), 

[ ] ,...2,1,0,1,0 =∈ rCf r . The operators [ ]r
nB  are 

named as thr − order generalization of the 
operators nB . Clearly [ ] NnBn ∈= ,B n

0 . 

 The subject of this section is to investigate 
approximation properties of the operators [ ]r

nB , 
Nnr ∈= ,...,2,1,0 . For this purpose we first give 

the following.  
 
Theorem 3.1. Let ( ) ( )αM

r Lipf ∈  and 
[ ]1,0rCf ∈ , then we have  
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where ( )rB ,α  is the usual Beta function and 

Nnr ∈= ,...,2,1,0 . 
 
 Proof. From (9) we obtain the following.  
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where )(, txnψ  is the function given by (7). Using 
the integral from of the remainder term in (11) it 
follows that (see[4]) 
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Since ( ) ( )αM

r Lipf ∈ , then we have  
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From the well-known property of the Beta function 
it follows that 
 

( ) ( ) ( ) )14(.,,11
1

0

1∫ +
=+=− − rB

r
rBdttt r α

α
ααα   

                                     
Substituting (13) and (14) into (12), we arrive at  
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Using (11) and (15) we reach to (10). Hence 
theorem follows. 
 
 Now let us define the function [ ]1,0Cg ∈  

by ( ) rxssg +−= α
. Since ( ) 0=xg , then it can 

be easly seen from (2) that  
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From Theorem 3.1 it readily follows that  
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As a result, taking  the formula (3), Theorem 
2.1 and Theorem 2.2 into account we can reach to 
the following respective results from Theorem 3.1. 
 
Corollary 3.2. Let [ ]1,0rCf ∈  such that 
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r Lipf ∈ , then we have  
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by (3). 
 
Corollary 3.3. Let [ ]1,0rCf ∈  such that 
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where nδ  is the same as in Theorem 2.1 and K  is 
the functional of Peetre. 
 
Corollary 3.4. Let  [ ]1,0rCf ∈  such that 
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r Lipf ∈ , then we have  
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where nδ  is the same as in (3) and we take 

( )α1Lipg ∈  in Theorem 2.2. 
 
 
4. An application to differential 
equations 
In this section we obtain a differential equation that 
the linear positive operators nB satisfy. One can find 
many differential equations that nB satisfy. 

Theorem 4.1. Let ( ) ( )1,0,
1
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t
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each [ ]1,0∈x  and [ ] ( )xfBCf n ;,1,0∈  satisfy the 
following functional differential equation 
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Proof. Since [ ]1,0Cf ∈  and the integral in 

(1) is convergent for each n , then differentiating 
each side of (1) we get the following. 
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Using the assumption ( )
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ln  in the last 

equation, the proof is reached. 
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