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Abstract: - In order to study the variations of mechanical components of an assembly, the accumulation of 
tolerances may be calculated using two major approaches: the Worst Case method and the Statistical (or 
probabilistic) method. The Worst Case method is very simple and well known. It must be applied only for 
simple assemblies where a larger allowance of the available space is granted for the tolerances. The statistical 
approach allows us to assign bigger tolerances for each component by taking advantage of random 
phenomena, which may occur during the manufacturing and assembly. On the other hand, this approach 
implies several hypotheses which may not always be respected in reality.  
This article proposes a case study to model a mechanical assembly of electrochemical cells whereby each cell 
consists of multiple layers of various materials. The first part of the study describes our main working 
hypothesis that encompasses the variability of environmental conditions (such as temperature, charge, 
pressure, shape defects, etc.) that necessitated the introduction of corrective semi-empirical factors. The 
second part contains the mathematical model, which describes the stochastic behavior of the thickness of cells 
once they are assembled. This model integrates the variance of each of the materials and the resulting effects 
of correlation between the materials, as well as the effects of the auto correlation into the case of several layers 
of the same material.  
The study demonstrates that the correlation and the auto correlation combine with different capability indices 
allows more precise predictions during the modeling stage. This allows the designer to optimize the 
parameters of the design to maximize the mechanical and energy performances of the electric cells. 
 
Keywords: - Statistic tolerances, Correlation, Robust engineering, Quality, Process controls. 
 
1 Introduction 
Going all the way back to it’s beginnings in the 
1960’s [1], the use of the statistical tolerances was 
already demonstrated in several cases, to represent a 
very effective and efficient method of estimating the 
behavior of an assembly of multiple components [2]. 
This subject has since been in constant development. 
Presently, a process is underway to standardize the 
various approaches which will then be integrated 
into industrial applications globally [3].  
An analysis performed using this method allows the 
prediction of the stochastic behavior of an assembly 
by including the variations inherent in each 
component. However, the results obtained are 
directly dependent on a working hypothesis. 
Recently, studies [4;5] have demonstrated that in 
certain cases (presence of correlation, assembly 
methods, etc.) the 'classic' statistical model becomes 
deficient. In these cases, it has also been 
demonstrated that the model must be 'refined' [6] to 

better express the interactions between the variables 
which make up the transfer functions. 
A statistical study of multiple layers must take into 
account the effects of correlation and of auto 
correlation [7-9, 16]. Furthermore, the analysis must 
take into account each of the distribution methods in 
order to maintain the performances within target 
values. Indeed, processes with excellent 
repeatability capacities, (high value of capability Cp) 
can present acceptable values for indications of 
localization Cpk (e.g. 1.33-1.67), with an error on the 
bias exceeding 50% of the required tolerance. 
The main economic advantage of using the 
statistical approach rather than the Worst Case 
approach lies in the fact that they allow a relaxation 
of tolerances, which generally translates into a 
decrease in manufacturing costs. As well, the final 
quality of the product is also improved because this 
approach ensures a better control of the processes 
(decrease of the variability and maintenance of the 
processes on target values). However, a good 
knowledge of the random characteristics of each of 
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the variables and their interactions is essential to 
building a coherent model with a good prediction 
capacity. 
This study aims to contribute to the use of statistical 
methods in the case of strong correlations. The 
purpose being to study the behavior of an assembly 
in the most realistic manner possible. The objective 
of this analysis will be to maximize the energy 
capacity stored inside a restricted space by an 
electrochemical cell. The characteristics of the 
Lithium Metal Polymer (LMP) battery are described 
in several publications [10-12]. Concretely, we shall 
try to estimate the stochastic behavior of each of the 
components, to obtain their mutual influences 
(correlation and inter correlation), and finally to 
integrate them through a general model. The final 
result will be the global behavior of the assembly 
(total electrochemical height of cells once 
assembled), as well as practical recommendations 
for reducing the variations during the definition of 
the control parameters of the manufacturing and 
assembly processes. 
The first part of the article defines the general 
mathematical model used for this study. We 
introduce coefficients of correction for each variable 
in order to consider the variations due to various 
phenomena. Thus, the compensations due to 
temperature, applied pressure, shape defects and 
electrical load, are obtained by the introduction of 
corrective factors. These factors in certain cases, 
stem from a physical well-known model 
(temperature and pressure) and, in others, are 
identified from an experimental semi-empirical 
model. The second part of the study presents the 
mathematical development that details the modeling 
for each of the various levels. The last part describes 
the experimental methodology used to collect the 
data that is used to define the various coefficients 
needed to develop the model. 
 
 
2 Mathematical Modeling  
The goal of this analysis is to model the dimensional 
variation of the total height ( y ) of a battery 
composed of multiple layers. The mathematical 
modeling will be processed by level, with each level 
corresponding to a stage of a well-defined assembly. 
The advantage of working by level is that it allows a 
better estimation of the results at every stage of the 
manufacturing process, and the introduction of 
corrections when necessary. It is important for a 
model to be most representative of reality in order 
that the height is maximized without incurring too 
much risk of interference. Thus, we can maximize 

the quantity of energy inside the battery without 
significantly increasing the cost of rejections. 
 

KxEC

EC=NxLi+NxHC+2xPP HC=AL+2xCAT+2xSPE

Y

 
Fig. 1. Simplified representation of the composition of the 

batteries according to the three levels of the assembly 
 

Each battery consists of ( K ) electric cells ( EC ). 
The total height ( y ) can be expressed by the 
following linear equation: 
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Each EC consists of laminates of ( N ) layers of 
Lithium ( Li ) and of half-cells ( HC ). This assembly 
is protected by two layers of polymer ( PP ), which 
is used to insulate electrically every half-cell.  
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Finally, the half-cell ( HC ) consists of a current 
collector that acts as a physical support and is 
comprised of an aluminum sheet ( Al ), of two 
cathodic layers (CAT ), and two layers of an 
electrolyte material named ( SPE ). 

2121 SPESPECATCATAlHC xxxxxx ++++=  (3.) 
 
2.1 Correction factors 
Several factors may influence the height of the 
battery as well as that of the EC’s. Environmental 
conditions are so different between the various 
stages of the assembly and of the operation that 
these corrective factors are absolutely necessary. 
These factors need to be adequately modeled in 
order to ensure the proper control of all the 
measurable parameters that may come into play 
during the manufacturing process, as these are likely 
to significantly influence the final height. In this 
article, our model considers a linear-type corrector. 
However, a more detailed study is currently under 
development and should ensure the validity of this 
hypothesis and/or allow the production of a better 
model. The following equation introduces the 
variations of the current parameters at the level of 
assembly of the EC  electric cells. 

*
321

'
ii ECEC xkkkx ×××=  (4.) 
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4
' kxx

ii ECEC +=  (5.) 
 

where, 
*

iECx  Is defined as the thickness of the electric cell 
at 20ºC, without pressure (Free State), 
(perfect flatness of the contact areas between 
layers) and full load. 

1k  Coefficient which corrects shape defects 
while the constituents are stacked up. 

2k  Coefficient which takes into account the 
thermal expansion of electrochemical cells. 

3k  Coefficient which corrects the effect of 
compressibility due to a pressure applied to 
electrochemical cells. 

4k  Coefficient which takes into account the 
state of the load inside electrochemical cells 
engendered by an ionic movement. 

 
Table 1. Coefficients of parameters by elements 

 rustle1 kk =

 

tempkk =2  
pressurekk =3  loadkk =4  

Alx  
ALf  TAL ∆×+α1  0.1≈  1 

CATx  CATf  TCAT ∆×+α1  
CATEP−1  1 

SPEx  SPEf  TSPE ∆×+α1  
SPEEP−1  1 

Lix  
Lif  TLi ∆×+α1  0.1≈  Ah

SA
G

∆×
∆  

PPx  PPf  TPP ∆×+α1  0.1≈  1 

where iα  represents the thermal coefficient of 
expansion, T∆  is the difference in temperature with 
respect to the reference temperature (20ºC), P  is the 
pressure applied (MPa), and iE  is the Young 
modulus (MPa). 
Some factors were neglected because they have 
practically no impact on the global behavior of the 
variable. Thus, for the load coefficient only the 
cathode and the lithium are affected by the load 
state, therefore only the load coefficient of the 
lithium will be considered. The variable G∆  (m3/J) 
corresponds to the variation in  volume with regard 
to the difference in energy. SA  (m2) is the active 
area in contact with the lithium. Ah∆  corresponds to 
the variation in ampere-hour between both load 
states. These are presented as variables because they 
can vary according to various battery designs. For 
the coefficient pressurek , we can ignore the 
compression of the aluminum because the other 
materials studied are much softer and thus have a 
much more significant impact. For the coefficient 

1k , the data will be identified experimentally. 

 
 
2.2 Modeling approach 
To be able to properly estimate the behavior of the 
multi-layer assembly, it is necessary to take into 
account variations that are inherent in the 
manufacturing of the constituents. To that end, two 
approaches are possible: the Worst Case approach 
and the Statistical approach. As has been 
demonstrated by numerous studies [3-5, 16], the 
statistical approach contains major economic 
advantages because it allows larger tolerances. But 
the method of statistical calculation implies a special 
attention to describe the stochastic behavior of the 
random variables (distribution law, correlation 
between variables, etc.). The statistical study of a 
linear assembly of several constituents was 
generally developed by Cox [13], and specifically 
for this problem by Tahan [5]. The equations (5) 
model the behavior of the expectancy (µ ) and of the 
variance ( 2σ ) of the results of the assembly. This 
equation is valid for the linear case. The term ( ijρ ) 
describes the coefficient of correlation between the 
layer i and the layer j. 
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3 Model Development 
3.1 Half cell (HC) 
The modeling of the first level is realized according 
to equation (3.), which allows for the estimation of 
the average addition of the constituents. Thus, we 
obtain, 

2121 SPESPECATCATALHC µµµµµµ ++++=  (7.) 
 
Next, it is necessary to integrate the variation of the 
different parameters. As it is no longer possible to 
consider all the variables as being independent, a 
corrective factor needs to be added in order to take 
into account the correlations. Estimating the level of 
correlation between the various layers is thus 
crucial. The following table summarizes the 
different possible correlations. 
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Table 2. Coefficient of correlation between the various 
constituents  

ijρ  Alx  
1SPEx  

2SPEx  
1CATx  

2CATx  

Alx   0≈  0≈  0≈  0≈  

1SPEx    21 SPESPE −ρ  0≈  0≈  

2SPEx     0≈  0≈  

1CATx      21 CATCAT −ρ

2CATx       

 
In the last table, the hypothesis that any correlations 
between different materials are null was retained. 
Thus, only the correlation with several layers of the 
same material is considered. Two correlations will 
thus be retained at this level. The correlation 
between the layers of SPE  and of CAT  are 
presented as follows: 
 

21 CATCAT −ρ  Is defined as the coefficient of 
correlation between the thickness of 
the upper and lower layers of the 
cathode 

21 SPESPE −ρ  Correlation between the thickness of 
the upper and lower layers of the SPE 

 
The calculation of these factors may be done using 
equation (8.) , 
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 (8.) 
Special attention must be paid when the data is 
acquired. To ensure the validity of the estimation of 
the correlations factors, the measures must be taken 
at the same location for both the lower and the upper 
layers. A shift in the taking of the measure would 
automatically lead to an error in the value of the 
coefficient. After all the hypotheses, we thus obtain 
the following equation for the variance of the half- 
cell ( HCx ). 

( ) ( ) 2222 1212 SPESPECATCATAlxHC
σρσρσσ ++++= (9.) 

 
 
3.2 Electrical Cell (EC) 
During the last study (of half-cells), the behavior of 
the variable HCx  was modeled. This new variable 
will be introduced for the study of the current level 
(electric cell - EC). The modeling is based on 

equation (2.), and thus we can estimate the average 
of the new variable using the following equation: 

PPHCLiEC NN µµµµ ⋅+⋅+⋅= 2  (10.) 
 
Next, we need to analyze the variations of this 
variable. As in the previous case, the independence 
between variables cannot always be considered for 
simplifying the study. Indeed, the nature of the 
process is such that several successive layers 
stemming from the same lot are directly stacked. 
This phenomenon, which we indicate in our study as 
“auto correlation” can have a significant influence 
on variations if the level of this correlation is large. 
This phenomenon becomes even more important 
when there are a significant number of successive 
layers. The following table demonstrates this 
phenomenon. We make the same hypothesis during 
the study of HC , in which case there are only minor 
correlations between the different materials. 

 
Table 3. Coefficient of EC auto correlation  

 
HCijρ  Correlation between the layer (i) and the 

layer j  of the half cell 

LIijρ  Correlation between the layer (i) and the 
layer j  of the lithium 

PPijρ  Correlation between the layer (i) and the 
layer j  of the polypropylene 

 
These auto correlation factors are estimated using 
equation 8. With the factors stated above, the 
behavior of the variation of EC  can thus be 
adequately modeled. 

22

22222

2)1(

)1(2

PPPPHCHC

LiLiPPHCLiEC

nn

nnnn

σρσρ

σρσσσσ

⋅+⋅−⋅⋅

+⋅−⋅⋅+⋅+⋅+⋅=  (11.) 

 
The last equation thus supports the fact that with a 
large number of layers, the auto correlation can have 
a very significant incidence on the variations of the 
EC. It is more crucial to add the correction factors of 
the parameters at the level of the EC, and special 
attention must be paid in order to identify the various 
coefficients present at this level. 
 
 

ijρ  HCjx  LIjx  PPjx  

HCix  HCijρ  0 0 

LIix   LIijρ  0 

PPix    PPijρ  
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3.3 Study of the battery height 
The battery is studied at several levels: the analysis 
must be realized, taking into account variations of 
the Clamp System in order to allow it to fit into the 
case (see Fig.2). 
 

Thrust Plate

Contact Plate

Bundle Clamp

Bundle Clip

yH

 
Fig.2. Illustration of the battery assembly 

 
Next, the nominal of “y” must be found and the 
variations inherent in the ECs calculated. This 
variation consists of the variation of the processes 
and of the auto correlation of these defined by the 
variable ( ECρ ). 

ECy k µµ ⋅=  (12.) 

ECECECy kkn σρσσ ⋅−⋅⋅+⋅= )1(22

 (13.) 
 
The development of the equations that illustrates all 
these variations can be described below. )(H  is the 
variable, which defines the dimension of the 
aluminum case. )( upCS  is the addition of the 
dimensions going from the Bundle Clamp )(C  to the 
outside. This variable thus includes the dimension of 
the Thrust Plate )( upTP  to the outside as well as the 
dimension of the Bundle Clip )(BC . For the variable 

)( dnCS , the reasoning is almost the same, which is 
the variable of dimensions leaving from Bundle 
Clamp, but inward. This one includes the dimension 
of Thrust Plate )( dnTP , the dimension of Contact 
Plate )(CP  as well as a space )(a  between both. 

)( dnCS  must thus be greater or equal to the height 
)(y  consisting of )(k  ECs. Two constraints must 

thus be simultaneously respected in order to ensure 
the final insertion. 
Constraint 1: 

upCSH ≥)min(  (14.) 

)max()max(2)max( BCTPCCS upup +⋅+=  (15.) 
 
 
Constraint 2 : 

dnCSy ≤  (16.) 
aCPTPCCS dndn ⋅+⋅−⋅−= 22)max(2)min(  (17.) 

 
 
4 Numerical Exploitation 
4.1. Identification of the model 
parameters 
All the processes used in the manufacture of ECs are 
continuous. The sampling policy is based on the 
estimation of the correction factors ik  and of the 
coefficients of correction. It is thus particularly 
crucial to ensure there is a proper sampling to ensure 
compliance with the validity of the model. 
According to the theorem of Nyquist, it is necessary 
to take at least 2 pieces of data by samples (a sample 
is considered as in one layer) to be able to detect the 
variations in the length of the component. 
 

L

 
Fig.3. Illustration of acquisitioning data 

 
Another factor which influences the quality of the 
sampling is the number of given necessary data to 
assure a good confidence respecting the validity of 
the sampling. To do so, it is strongly recommended 
to obtain from 200 to 300 values [14]. We are thus 
going to proceed as such for each of the parameters 
to be sought. It should also be noted that for each 
data collection campaign, an analysis of the 
measurement system according to the ISO TAG 4 
[15] guide was done to ensure an acceptable level of 
uncertainty of measure. 
To identify the correction factors (equations 4 and 
5), we proceeded experimentally. For the analysis of 
charge, a sampling was made to estimate the average 
contraction due to the discharge of EC. This 
contraction is attributable only to lithium because 
the cathode hardly reacts to the charge of ECs. The 
value of the coefficient is thus distributed only in the 
lithium. For the coefficient of pressure, the 
compression of some stacks of ECs  was considered 
in order to establish the value. Through the study, 
we know from the respective Young modules that 
we can attribute the major part of the compression 
undergone by the half-cell to the SPE . The effect of 
the other materials is considered as negligible. The 
coefficient due to the thermal expansion was found 

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp110-117)



with the assistance of a table for the standard 
materials, and by experiment for the others. The 
validation of the multiple coefficients was done with 
the help of a study of an assembly of ECs. For the 
coefficient 1k , the only possible method was to 
proceed with an empirical study of the difference 
between the nominal thickness of a number of 
laminates and the real thickness of this stack. This 
coefficient was identified for the assembly, which 
explains why we have the same value for each of the 
materials. 
 

Table 4. Coefficients of parameters per element 
 rustlekk =1  tempkk =2  pressurekk =3  

chargekk =4

Alx  1.012 1.001 0.1≈  1.000 

CATx  1.012 1.013 0.635 0.1≈  

SPEx  1.012 1.045 0.060 1.000 

Lix  1.012 1.003 0.1≈  0.940 

PPx  1.012 1.006 0.1≈  1.000 
 
The second part of this study consisted in validating 
whether a phenomenon of correlation was significant 
between two layers of the various constituents. The 
correlation between two layers of different materials 
was rejected because their manufacturing processes 
are completely different. 
The only remaining phenomenon was thus the 
correlation between layers ( i ) and ( 1+i ) of the same 
material. To do so, we collected experimental data to 
establish this correlation. Figure 4 illustrates the 
results between layers ( i ) and ( 1+i ) with the 
cathode as well as with the SPE. Table 5 summarizes 
the results obtained, which demonstrates that this 
type of correlation for the studied parameters is not 
significant. 
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Fig.4. Illustration of the influence of the correlation of the 
cathode and the SPE  

 
Table 5. Coefficient of correlation between the different 

components 

 
The third and last part of this experimental 
investigation was the identification of the auto 
correlation factor between the various layers of the 
EC. Each layer arises from an assembly as we saw 
previously. Data was collected to measure the 
individual thickness of each EC. The following table 
illustrates the main results based on the study of this 
phenomenon for the manufacturing processes of 
each one. As can be seen, the correlation of the half-
cell is relatively weak. Thus, this allows the 
assignment of a much smaller value for the variation 
of the final assembly. On the other hand, the auto 
correlation of the layers of Lithium is more 
important as it has little effect on the final result due 
to the low variability of the Lithium extrusion 
process. Globally, the study allowed us to optimize 
the design and to assign a larger quantity of active 

ijρ  Alx  
1SPEx  

2SPEx  
1CATx  

2CATx  

Alx   ≈  ≈  ≈  ≈  

1SPEx    12.0≈  ≈  ≈  

2SPEx     ≈  ≈  

1CATx      14.0≈  

2CATx       
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material in the assembly, thus allowing an increase 
of the energy efficiency. 
 

Table 6.- Coefficient of EC auto 
correlation  

ijρ  HCjx  LIjx  PPjx  

HCix  15.0≈  0 0 

LIix   8.0≈  0 

PPix    5.0≈  
 
The simulation of the stochastic behavior allowed us 
to emphasize the importance of maintaining the level 
of the auto correlation of the layers of the half-cell 
(HC) at the lowest possible value. The following 
figure illustrates the importance of the correlation of 
the half-cell with respect to the result of the final 
variation of the assembly. Note that in the case of 
the statistical study, the level of variation was 
calculated on the basis of the interval corresponding 
to 99.73% of the data ( σ3±  or 1=pkC ). 
 

 
Fig.5. Illustration of the influence of 

the HC  correlation 

 
As shown in Figure 5, it is evident that the 
correlation of the half-cell is very important for 
obtaining a precise model. As can be observed, the 
value of the variation obtained by varying only this 
parameter can go from 4.00 mm to 9.77 mm. The 
point, identified by a circle, illustrates the level of 
variation that corresponds to the experimental data 
used during this study. 
 
 
4.2. Numerical Validation 
To validate our model and to demonstrate the impact 
of the correlation and the correctness of the model, a 
statistical analysis of the historical data 
(approximately 450 modules) was performed. In 
each production lot, the coefficients of correlation 
were identified from the measures done on the 
production line. The data covers two (2) lamination 
processes for the lithium. The first process has a 

coefficient of auto correlation of 0.2 (-----) and the 
second, of 0.8 (——). Curves indicate the results 
produced by the model presented in this article. The 
experimental data connected with the first process of 
lamination of the lithium are identified by ( ) and 
the data connected with the second process are 
identified by ( ). 
The results of the study were then compared with the 
formula proposed in this article. The graph that 
follows illustrates the results obtained theoretically 
and experimentally.  
 

0.2Liρ =

0.8Liρ =

 
Fig.6. Illustration of the influence of 

the HC correlation 

 
As can be observed in Figure 6, the theoretical 
model demonstrates its coherence and its exactness 
in predicting the global behavior of tolerances. 
Errors of about 10% remain present in the model. 
We explain this by some degree of variation of the 
factor correlations as well as by the variation 
inherent in the various manufacturing processes of 
modules. In spite of these variations, it is clear that it 
is beneficial to take correlation phenomena into 
account and that the proposed equation constitutes a 
major contribution to the proper evaluation of the 
variations for each level of correlation. 
Special attention must be paid to the fact that the 
average of the processes gets closer as possible to 
the target value. This requirement may be verified 
through the indication of capability called Cc. This 
requirement is essential because when a process is 
correlated, it can have a big influence on the global 
average of the assembly. This subject will be 
handled in greater depth in a future paper. 
 
 
5. Conclusion 
The statistical calculation method, taking into 
account several correction factors was presented in 
this article. The case study developed an effective 
method for describing the behavior of a mechanical 
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assembly composed of multiple layers. The 
importance of the various correction factors was 
demonstrated in this article to show their uses. The 
model so created should very faithfully predict the 
behavior of the assembly. This method should thus 
be used for any similar case where the precision of 
estimations is crucial. 
This study allowed the definition of the 
performances required by the variations of the 
processes to ensure that the requirements of the 
design are respected. Recommendations were made 
for each of the constituents individually in order to 
obtain maximum results. Furthermore, through a 
sensitivity analysis, the model allowed the 
establishment of elements that can bring about 
maximum earnings. Targeted corrective measures 
can therefore be brought under the control of the 
manufacturing processes for the most important 
elements. 
 
 
References: 
[1] Gilson, J. (1952). A New Approach to 

Engineering Tolerances. New York, NY: 
Industrial Press. 

[2] Zhang, H. C. (1997). Advanced Tolerancing 
Techniques (John Wiley & Sons Inc. ed.). New 
York: Wiley-Interscience. 

[3] Srinivasan, V. (April 1997). ISO Deliberates 
Statistical Tolerancing. Paper presented at the 
5th CIRP Seminar on Computer-Aided 
Tolerancing, Toronto, Canada. 

[4] Anselmetti, B. (2000). Cotation fonctionnelle 
statistique: Modèle et synthèses des tolérances. 
European Journal of Automation, 345(2-3). 

[5] Tahan, A., Songmene, V., Châtelain, J.-F. 
(2004). Case Study of the Application of 
Statistical Tolerances Taking Account of 
Correlation. Paper presented at the Proc. of 
International Conference on Computers and 
Industrial Engineering, San-Francisco. 

[6] Chang-Xue, F. J., Kusiak, A.,. (2002). Robust 
Tolerance Synthesis With the Design of 
Experiments Approach. Transaction of the 
ASME Journal of Engineering for industry, 122, 
520-528. 

[7] Cox, N. D., &Shapiro, S.S.,. (1967). Statistical 
Model in Engineering. Wiley, New York. 

[8] Cox, N. D. (April 1979). Tolerance Analysis by 
computer. Journal of Quality Technology, 11(2). 

[9] Björke, O. (1989). Computer -Aided 
Tolerancing. ASME Press. 

[10] Vallée, A., Robillard, C., Wilkinson, H. (2004). 
The Impact of Lithium-Metal-Polymer Battery. 

Characteristics on Telecom Power System 
Design. Paper presented at the INTELEC. 

[11] Paradis, R., Simoneau, M., Davis, M.S.,. 
(2002). Lithium-Metal-Polymer Battery for 
Stationary Applications. Paper presented at the 
BATTCON. 

[12] Vallée, A., Robillard, C., Wilkinson, H. (2003). 
The Impact of Lithium-Metal-Polymer Battery. 
Proven reliability based on customer field trials. 
Paper presented at the BATTCON. 

[13] Cox, N. D. (1986). How to perform statistical 
tolerance analysis. American Society for Quality 
Control, 11. 

[14] Daimler Chrysler Corporation, F. M. C., 
General Motor Corporation. (2002). 
Measurement System Analysis Reference 
Manual (Third ed.). 

[15] ISO. (1993). Guide to the Expression of 
Uncertainty in Measurement. In. Geneva, 
Switzerland: International Organization for 
Standardization. 

[16] Lee C.L., Tang, G.R. (2000). Tolerance design 
for products with correlated characterization. 

 
 
 
 
 
 

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp110-117)


