

Interpreting an Arbitrary Data Stream

LIHUA WANG AND LUIZ F. CAPRETZ
Department of Electrical and Computer Engineering

University of Western Ontario
London, Ontario, N6A5B9

CANADA

Abstract: This paper describes a new method that can interpret and extract information from a
machine-level binary data stream. This method has two major components: one is a Data Format Scripting
Language (DFSL); the other is generic Data Parsing Application Software. The DFSL is a scripting
language that specifies the physical layout and semantic constraints for an associated binary data stream.
This language can be used to parse a data stream with a specified data format and convert the data into
meaningful data structure with text notation. The Data Parsing Application Software is a generic program
used to parse the script and its associated raw data. Depending on the script, this program can interpret the
meaning of individual data fields and their values. This language and the developed system can be used in
the electrical engineering area, especially where the demand for manipulation of real machine-level
binary digits is high.

 Key-Words: Data Stream, Table Scripting Languages, Data Format, Data Description Languages

1 Introduction
Information extraction from an arbitrary data
stream is an important task in the developing and
debugging processes in electrical engineering,
such as hardware device development, network
protocol processing, and protocol testing and
developing. The raw data can be binary data or one
of the standard text schemes (Unicode, ASCII,
EBCDIC, etc); however any data can be regarded
as a sequence of bits.

Data format is the key of determining the
physical layout and semantic meanings of the data.
Thus understanding the data format and producing
a parser are crucial steps of extracting information
and for future manipulation [1]. Understanding the
complicated data format is not always easy.
Current data format documents are typically
described in natural human language, which is
prone to ambiguities and misunderstanding. How
to specify a data format accurately is an interesting
research task but is beyond the scope of this paper.
Here, we assume our users are professional
engineers who have sufficient information to help
them in their understanding of the specific data
format.

The question then becomes how to produce the
parser efficiently. Currently, a programmer must
choose a language, convert the documented data
format description into data structures such as C
structures; then the data must be read into memory,
some operations performed, and the data written
back to external storage [2].

The C programming language is the most
commonly chosen language for writing such
programs, especially to implement real-time
algorithms in a system that interfaces with bare
hardware devices [3]. Engineers incur
time-consuming and error-prone penalties from
low efficiency C languages when extracting
information from raw data.

Our solution is to create a scripting language
that is easy to learn, straightforward to understand,
and agile to fulfil a user’s requirements at the same
time. We have also developed a generic
application to parse the script and the raw data.

The advantages of this solution are:
1. The only tool a user needs is a text editor;

no compiler/linker or software
development system is necessary.

2. Users don’t need to learn programming.
3. The language is easy to use with simple

Proceedings of the 4th WSEAS/IASME Int. Conf. on System Science and Simulation in Engineering, Tenerife, Spain, December 16-18, 2005 (pp177-185)

syntax and rich semantic meaning. It is
very close to the data format configuration
table used to define the data format.

4. It saves developing time.
5. Many functions are optimised and hidden

from the user such as file access and data
manipulation.

The user can write a script for a specific data
format using this language and the associated
application can parse the script and the raw data.
The output is a meaningful interpretation of the
data fields. This process takes shorter amount of
time than using functional language, such as C.

2 Motivation
The original idea for this project came from a
problem faced by many engineers in hardware
device development. That is the need for an easier
way to parse and interpret the arbitrary bit streams.

Most devices such as drivers and interface
cards have control and status registers. The device
is controlled by setting and clearing particular bits
in the control register (see Figure 1), while its
status is obtained by examining bits in the status
register.

Figure 1. Disk control register

There are many of these registers and each

register, or even each bit represents different
meanings. Once engineers have the register values,
they have to refer to the manual or supporting
documents to understand what each bit field
represents and the meaning of different values. It is
tedious and easy to make mistakes. Sometimes,
they develop special programs to parse the data.
However, it takes time to implement the program
and it is not that easy to use C to process arbitrary
bits.

The web application developers face the same
problem when writing network data processing
code. Many network applications need to parse
raw data according to standardized packet formats
such as TCP/IP, FTP and SSL. Interpreting
network data is the key to most important network
applications including Web Server Testing,
network traffic monitoring, network firewall
checking and etc. Due to the complexity of
networking protocol, and the bit-oriented feature
of the networking data stream, it is complicated to
write a program using C languages to interpret the
data stream. Why C language is not sufficient in
those areas is discussed in the following five
aspects.

2.1 Byte-Alignment Constraints
The data type system of C language is byte-based,
meaning it applies byte-alignment restriction. This
assumes the storage media and the input/output
routines have a minimum unit of one byte [4].
Programmers are conditioned to think of memory
as a simple array of bytes [5].

A common C structure may appear as:

 struct ABC {
 char a;
 int b;
 double c;
 } abc;

It specifies the physical layout of a three-field

data stream: field “a” is one byte long, field “b”
occupies four bytes (Type int usually is four bytes
long, but depends on the system; it could be two
bytes in MSDOS) and field ‘c’ owns an eight-byte
sequential space. Types char, int and double are
primitive types and as well as the other data types
of C language, they are all integer multiples of one
byte. All the operations are based on these
“molecule” objects.

The real machine-level atomic unit is the bit.
When the required granularity is less than a byte (1
byte = 8 bits) and we need bit-fields with arbitrary
length, the byte-alignment can become a barrier for
fast programming. If we want to use the C
structure to specify an arbitrary length field, there
is no ready-made data type that can give

Proceedings of the 4th WSEAS/IASME Int. Conf. on System Science and Simulation in Engineering, Tenerife, Spain, December 16-18, 2005 (pp177-185)

prominence to the domain. (The feature “typedef”
only allows the user to introduce synonyms for
types that could have been declared.)

Most networking data formats pack data as
tightly as possible and can contain sufficient
information using minimum space [3]. Take an IP
packet for instance, the structure of IP header is
shown in Figure 2.

Figure 2. IP header structure

We can see some of the fields are not integer

multiple of one byte: Version is 4 bits; IHL
(Internet Header Length) is 4 bits; Flags (Various
Control Flags) is 3 bits; FragmentOffset is 13 bits
[6].

The content of Flags field is specified in Figure
3. Each bit has its individual meaning and the
different bit value indicates certain functions. This
three-bit field has a semantic meaning of “Various
Control Flags”, and each bit has a respective
meaning as seen in the following list: Bit 0 is
reserved and its value must be zero; Bit 1 is DF,
which means “Do not Fragment” if that bit is set as
one, otherwise it may Fragment. Similarly, bit 2 is
MF, which means “More Fragment” if holding one
bit.

We can use pointer arithmetic to access the
memory and bit masking and shifting to achieve
the bit operations. However, the pointer arithmetic
and bit operations of C language are notorious for
their tedious and error-prone nature. Moreover, the
semantics end up buried in parsing code and the
difficulty of reading the code can make the
maintenance even harder [1].

Bit 0: reserved must be zero
Bit 1: (DF) 0 = May Fragment, 1 = Don't Fragment
Bit 2: (MF) 0 = Last Fragment, 1 = More

Fragments
Figure 3. Content of various control flags

2.2 Endianness Method Difference
The word “endianess” describes the method used
to represent multi-byte integers in a computer
system. There are two types of endianess: big
endian refers to the method of storing the most
significant byte of an integer at the highest byte
address, and little endian is the opposite. Different
endianess methods may apply for different
machine’s architecture, and may cause problems
when application runs across different systems.

When referring to networking applications,
network packet formats are independent of a
machine’s architecture but the network byte order
and the host byte order can be different. When
using C language to manipulate the packet,
programmers must remember to convert any
multi-byte numeric quantities between the two
systems at all appropriate places [3]. For example,
in the code net/ipv4 of Linux implement, the
endianness related macros ntoh* and hton*
together appear about 300 times.

C language also provides a practical feature
called as bit fields which automatically packs the
bit fields as compactly as possible and provides
that the maximum length of the field is less than or
equal to the integer word length of the computer
[7]. However, bit fields lack of portability between
platforms, because some bit field members are
stored left to right others are stored right to left.
That is also caused by endianness difference.

Proceedings of the 4th WSEAS/IASME Int. Conf. on System Science and Simulation in Engineering, Tenerife, Spain, December 16-18, 2005 (pp177-185)

 2.3 Field Dependency and Dynamic Typing
Some formats and especially some protocol
headers can contain fields whose values or sizes
depend on the value of a previous field. For
instance, the Options field in the IP header can
occupy between 0 to 40 bytes depending on the
value of the previous field IHL (Internet Header
Length) [3]. Since static types cannot represent
variable-sized fields, such fields as Options are not
supported by C structs. We need to use dynamic
typing to solve this problem.

2.4 System-Dependent Word Size
Another small problem concerns the system
dependent word size. As we mentioned in problem
2.1, the length of the Integer (type ‘int’)
traditionally depends on the length of the system's
Word type.

 Thus in MSDOS it is 16 bits long whereas in
32 bit systems (like Windows 9x/2000/NT and
systems that work under protected mode in x86
systems) it is 32 bits long (4 bytes) [5]. The
ambiguous type size may produce different results.

The question then is what about using existing

libraries? Some similar libraries may provide
functions that enable us to read a given file format.
We have to learn the library interface first but it
may lack the necessary features we need since the
former developers did not foresee a need for
different features. On the other hand, it may cost
more in time and labour to convert similar
programs according to different requirements. This
decreases programming efficiency and can extend
the development period.

So far, our problems are all related to the C
language. Why are other high-level languages such
as Standard ML, Perl not used? The reason is that it

takes time to learn a new programming language.
However, we may just need to use a fraction of its
functions and a running environment.

Another frequently asked question is why not
using XML. XML (eXtensible Markup Language)
is a meta-language that is a way to define tag sets.
To access an XML document file from a program,
you can either parse the tag structure in your own
code or using one of two standard APIs to invoke
parsers to do it for you. The two APIs are DOM
(Document Object Model) and SAX (Simple API
for XML) [8]. These APIs are still based on byte
type system and so far they did not focus on bit
field’s specification. So our future research
direction is to embed XML concept into our
project.

3 Method Prototype
The prototype of our project is shown in Figure 4.
Originally, the user wants to pare the Binary raw
data according to its Specified Data Format that is
usually described in a human-language. And the
user-expected result is the meaning and value of
each bit field member; we call the output Data
Interpretation. The Specified Data Format is on
the left end of the figure and is associated with the
binary raw data. The data format can be any user
defined format or standard format (such as .bmp,
or IP header format).

The box following the Specified Data Format is
our core component, the Data Format Scripting
Language (DFSL). We can use this language to
translate the documented data format into Data
Format Script, which is the interface between the
users and the computer. It is more straightforward
for non-specialists to understand a scripting
language.

Proceedings of the 4th WSEAS/IASME Int. Conf. on System Science and Simulation in Engineering, Tenerife, Spain, December 16-18, 2005 (pp177-185)

Figure 4. Data interpreting method prototype

Now we have the Data Format Script and Binary raw
data. They are the two actual inputs for our generic Data
Parsing Application, which is the main component of
our project. This parsing application can parse the Data
Format Script and execute any command in the script.
The output is Data Interpretation, which includes the
meaning of each bit field and its value.

This method is not limited to any particular data
format. Once the data format is established, all the data
with that format can be parsed.

4 Data format describing language
As a scripting language, DFSL is not a universal
programming language, and has been developed for
special usage (to interpret binary data). It is also not a
substitute of C language. We only include minimum
components to maintain its simplicity. It has special
features that can simplify a user’s specification, and
some handy commands to facilitate bit field operations.
We introduce these items in this section by examples.

4. 1 Layered Architecture Specification
When describing the layout of the data format, people
usually use a tabular form such as we have seen in
Section II, the IP header structure. In fact, the tabular
form also represents a layered architecture (or called as
hierarchical architecture). A representative example is
the bitmap file (.bmp); its first layer is shown in Table 1:

Table 1. Bitmap file construct

Bitmap File Header
Bitmap Info Header
RGB Quad Array (or called as Optional Palette)
Colour-index Array (or called as Image Data)

Then each component has its individual structure that

we call the sub-layer (see Table 2: the Bitmap file header
is the first component in bitmap file construct):

Table 2. Bitmap file header construct
Bitmap File Header:
Identifier 2bytes File type, must be BM
File Size 1dword Size of bitmap file
Reserved 1dword Must be zero
Offset 1dword Offset from beginning of file

to the beginning of bitmap data

In our language, we use grouping and sequencing to

specify the layered structure of the data format.
Grouping can gather all the component members in the
structure body, and the sequence of individual fields
indicates the physical layout of the bit stream.

 Structure definition has the form @label := { … }:
1) the structure name is also called as a label which starts
with a @; 2) the definition symbol is a colon with an
equal sign; 3) the bound symbol are matched braces. The
structure name is also used to contain real data, and its
component fields can obtain bit fields from it. For
instance, @IP_packet can get the data from a binary file
with a file name “ip.dat”:

 @IP_packet = getBinaryFile (“ip.dat”)

 @IP_packet := {
 $version = getBit 4;
 $IHL = getBit 4 ;
 $TOS = getByte ;
 $TLength = getByte 2 ;
 $identif = getByte 2 ;
 $reserved = getBit ;
 $dontFrag = getBit ;
 $moreFlag = getBit ;
 $frageOffset = getBit 13;
 $ttl = getByte;
 $protocol = getByte;
 $cksum = getByte 2;

 $src = @ipAddress;
 $dest = @ipAddress;
 $options = @ipOptions;
 $padding = byteString;
}
...

Code 1. IP header structure

Take IP structure for example, we defines all fields of

Proceedings of the 4th WSEAS/IASME Int. Conf. on System Science and Simulation in Engineering, Tenerife, Spain, December 16-18, 2005 (pp177-185)

an Internet Protocol header structure (refer to Figure 1.)
and groups those fields using braces under the label
@IP_packet. The sequence of individual fields indicates
the position of those fields in the real data. The code
fragment is shown in Code 1.

Each field within the structure has a variable name
that starts with the $ symbol. We use an assignment
statement which has the form $name = <<right
Value>> to get the field value. The right value can be a
real value or another sub-layer structure. As we can see
from the sample code, most fields get the bits or byte
value (e.g. $name = getBit 4); some of them are assigned
a sub-layer structure name starting with @ (e.g. $name
= @structName). Examples such as $scr (source IP
address) and $dest (destination IP address) use the same
structure @ipAddress. We then define the sub-structure
outside of current structure as shown in Code 2.

@ipAddress := {
 $first = getByte ;
 $second = getByte ;
 $third = getByte ;
 $four = getByte ;
}...

Code 2. Code for sub-layer structure

The hierarchical architecture means we can use

grouping to specify the data structure and sequencing to
describe the layout of the data. The sequence of terms
determines the execution order. When meets a sub-layer
label, the program will traverse the sub-layer structure
its definition and resolves the fieldnames before
returning and executes the next entry.

4.2 Read Bits
One of the advantages of using our language is that hides
the tedious bit operations from the user. Because the
data is regarded as a sequence of bit, we avoided
endianness problem when read the bits. Its
straightforward use achieves the desired bit fields by
using command getBit, getByte, seeBit and seeByte.
Those commands return integer value of the bit field.

The syntax of this series command is as follows:
• getBit count
Semantic: Read the number of “count” bits from
current position (e.g. getBit 4); if offset is not given,
default read one bit. The “count” can be a numeric
number or an existing variable’s value. We can see it
as field dependency.
• getBit @position , count
Semantic: Read the number of “count” bits from the
specified position (e.g. getBit @15, 3); if offset is not

given, default read one bit. The “count” can be a
numeric number or an existing variable’s value.
• getBit start ~ stop
Semantic: Read bits from “start” position to “stop”
position (e.g. getBit 15 ~ 9).
• getByte count
Semantic: Read the number of “count” bytes from the
current position (e.g. getByte 3). The “count” can be a
numeric number or an existing variable’s value.
• seeBit
Semantic: seeBit shares the same syntax as getBit. It
can only preview the bits without moving the bit
pointer from the current position.
• seeByte
Semantic: seeByte shares the same syntax as getByte. It
can only preview the bits without moving the bit
pointer from the current position.

4.3 Constraint and Operations
As long as the bit stream is not exhausted, the data can
be chopped and assigned to a field variable. However,
there are always constraints on the data, and the
extracted data field may also be operated.

We use a keyword where here to follow the current
layer structure definition, and the statements braced in
the where clause can do the real job, either be applying
constraints on bit field or performing operations on the
extracted data fields (see Code 3) while having no effect
on the data layout. That is why we bring in seeBit
function, which shares the same function as getBit but
protects the continuity of the original data stream.

We can also define local variables for extra
operations. As shown in Code 3, we defined a new
variable $classA which received the value of the first bit
of @ipAddress structure; if it is equal to zero, that means
it is a Class A IP address and the following script will
print its meaning and data values which are already
extracted in the structure.

4.4 Casual Interpretation
We use the concept of layers to construct the layered
architecture for complicated data format. However, for
some straightforward formats, it will be more practical
to interpret the result right after getting the bit field’s
value. So we allow the output routine be placed within
the structure definition. For instance, PMD
(Performance Motion Devices) has 16-bit status
registers and each register has its own configuration (for
a detailed description please refers to Appendix A).
 As we can see in Table 3, the physical layout of this
register is quite simple. There is no field dependency or

Proceedings of the 4th WSEAS/IASME Int. Conf. on System Science and Simulation in Engineering, Tenerife, Spain, December 16-18, 2005 (pp177-185)

complicated substructures. We can print out the bit
field’s semantic meaning and variable value right after
we obtain its value.

@ipAddress := {
 $first = getByte ;
 $second = getByte ;
 $third = getByte ;
 $four = getByte ;
} where {
 $classA = seeBit @31 , 1 ;
 if ($classA == 0)
 {
 print "Class A:" ;
 print "Network address: " , $first ;
 print "Host address:" + $second + "."
 + $third + "." + $four ;
 }
 ...
}

Code 3. Fragment of “where” clause

Table 3. PMD configuration 3
PMD Configuration 3

15 ~ 11 10 ~ 9 8 7
Tx

Power
Cutback
Value

Tx
Power

Cutback
Mode

SBM
Disable

Single
Upstream
Disable

6 5 4 3~0
China
loop

OL
Disable

ROL
Disable

Hybrid
Select

Casual scripting is a practical feature in script

writing. The user is free to add operational code once get
the values they need. This is suitable for simple and
straightforward format, and won’t cause much trouble
for future reading. The code fragment of interpreting the
data in configuration 3 is shown in Code 4.

The programming style is quite similar to the C
language but borrows ideas from other scripting
language, such as Python or Perl to make it more
convenient (e.g. implicit data type, simplified
input/output routine). For instance, we use the “+”
symbol to concatenate several components and the print
command can print out any component in its scope. In
the future we need to add more format specification to
the output command.

4.5 Deformation of Switch Statement
A certain bits combination presents a certain meanings.
The simplest situation is one bit, that like a switch of a
certain function, when set to one means enable and set to
zero means disable or vice versa. The more bits in a
field, the more conditions it can represent.

Once the data is obtained, we know which condition

is matched by checking the manual and our program can
print out the desired interpretation. This function is
always performed by a switch-case statement, and
switch-case action is used in our script with a high
frequency.

@PMD3 = 0x78ab ;
@PMD3 := {
$TxPowerValue = getBit 15 ~ 11 ;
#print "Bit 15 ~ 11: Tx Power
Cutback value (dB) = " + $TxPowerValue;

#print "Bit 10 ~ 9: Tx Power Cutback Mode" ;
$TxPowerMode = getBit 10 ~ 9 ;
 # 0 : " 0 : No Tx Power Cutback" ;
 # 1 : " 1 : Manual Tx Power Cutback" ;
 # 2 : " 2 : Automatic TA Power Cutback" ;
 # 3 : " 3 : Reserved" ;

$SBM = getBit @8 , 1 ;
......

$HybridSelect = getBit @3 , 4 ;

} where {
 $HybridMode = $HybridSelect -> seeBit @2 , 3 ;
 # 0 : " 0 : default setting" ;
 # 1 : " 1 : GPIO is in tri-state mode" ;
 # default : "Reserved" ;
}

Code 4. Casual scripting

Because DFSL is a practical language for special
usage, we deform the switch statement: 1) mark each
condition with #; 2) compare the condition values with
current field’s value; we have a variable contains the
current value. 3) Execute the desired actions when the
condition is matched.

The sample code is shown below (Code 5.)
$HybridMod is a three-bit field (technically it can have
nine combinations). According to the configuration, 000
is the default setting, 001 means GPIO is in tri-state
mode, while others are reserved.

$HybridMode = $HybridSelect -> seeBit @2 , 3 ;
 # 0 : " 0 : default setting" ;
 # 1 : " 1 : GPIO is in tri-state mode" ;

 # default : "Reserved" ;
Code 5. Deformation of switch statement

Thus far we have briefly introduced the main feature

of our language. As a scripting language still in
development, the DFSL project is an open-ended project
where we try to describe more data formats to the
greatest extent. The associated application is generic
software needed to parse this language. Using the
application and the script, users can easily interpret a bit
stream.

Proceedings of the 4th WSEAS/IASME Int. Conf. on System Science and Simulation in Engineering, Tenerife, Spain, December 16-18, 2005 (pp177-185)

5 Related Work

Only a few related investigations have been carried out
in this area. The most prominent are:

• DataScript. DataScript consists of two
components: a constraint-based specification
language to describe physical data layouts as
types and a Java language binding that provides
a simple programming interface to script binary
data [3]. The specification language describes
the data format by DataScript types: primitive
types, set types, composite types, array types.
Each field can associate with a constraint.
Unlike our language, DataScripit cannot handle
bit fields.

• PacketTypes. This specification language uses

type system to match a network packet to a
specified protocol. Types are used to eliminate
the need of to write low-level code [2]. But it is
only limited to some specified network
protocol.

• PADS (Processing Arbitrary Data Streams).

The goal of the PADS project is to simplify data
stream analysis and to parse high-volume data
streams such as web server logs [1]. However, it
does not focus on bit field operations.

6 Conclusion
After investigating problems in a real industry
environment, a practical solution is achieved to interpret
raw data: regarding any kind of data as bit-stream, using
a scripting language to describe the data format, and
applying a software application to interpret the raw data
according to the script.

This solution is relatively new and no similar
application presently exists. The major contributions of
this solution are:

• A simple, no compiler/link or software
development system is needed. The only tool a
user needs is a text editor.

• It is easy to use and requires no complicated
programming.

• It is straightforward to read and very close to the
data format or configuration table used to define
the data format

• It saves development time.
As a result, this frees programmers from the tedious

task of coding input/output routines, and eliminates the
distractions from architecture-dependent problems
making it possible to achieve faster development.

Reference

[1] K. Fisher and R. E. Gruber, “PADS: Processing

arbitrary data stream”, Proceeding of Workshop
on Management and Processing of Data
Streams, San Diego, California, June 2003.

[2] G. Back, “DataScript – a specification and
scripting language for binary data”, Proceedings
of the ACM Conference on Generative
Programming and Component Engineering
Proceedings (GPCE 2002), published as LNCS
2487. ACM, Pittsburgh, PA. October 2002.
pp. 66-77

[3] P. J. McCann and S. Chandra, "Packet types:
abstract specification of network protocol
messages", ACM SIGCOMM Computer
Communication Review, vol. 30, Issue 4,
October 2000, pp. 321-333.

[4] J. Rentzsch, “Data alignment: Straighten up and
fly right”, IBM developerWorks, March 2005,
<http://www-128.ibm.com/developerworks/libr
ary/pa-dalign>

[5] J. Soulié, The C++ Resources Network, March
2005, <http://www.cplusplus.com/doc/tutorial/
tut1-2.html>

[6] Suresh, “The IP Routing Protocol”, March
2005, <http://homepages.uel.ac.uk/u0219908/
IPPacketStructure.htm>

[7] Dave Marshall, “Low level operators and bit
fields”, March 2005, <http://www.cs.cf.ac.uk/
Dave/C/node13.html>

[8] edikt, Developer’s Guide, ed 1.3, April 2005
<http://www.edikt.org/binx/docs/BinXDevGui
de.pdf>

Proceedings of the 4th WSEAS/IASME Int. Conf. on System Science and Simulation in Engineering, Tenerife, Spain, December 16-18, 2005 (pp177-185)

Appendix A

PMD Configuration 3
Channel Reset = undefined Read/Write 1A1CH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Tx Power Cutback Value
Tx Power
Cutback

Mode
SBM Disable

Single
Upstream
Disable

China
loop

OL
Disable

ROL
Disable Hybrid Select

Name Bit Description
Tx Power
Cutback Value

15:11 Tx Power Cutback Value – The power cutback is a 5-bit binary value that ranges from 0 to 31 dB in
1 dB steps.

Bit 10 Bit 9 Tx Power Cutback Mode

0 0 No Tx Power Cutback – When this mode is selected, the total Tx power used is
as specified in the standard and the annex used by the connection.

0 1 Manual Tx Power Cutback – When this mode is selected, the Tx power used is
reduced by X dB from the standard specified value.
The Tx power reduction factor, X, if implemented, is specified in the release note
for a given DSP code version as either:
A fixed value
2) The Tx Power Cutback field (if X is not specified in the release note for a given
code)

1 0 Automatic TA Power Cutback – When this mode is selected and the actual
downstream margin is greater than the maximum margin, the modem
disconnects and cuts back the Tx power so as not to exceed the maximum
margin. Once done, it reconnects.

Tx Power
Cutback Mode

10:9

1 1 Reserved.

SBM Disable 8 Setting this bit to “1” disables the Single Bit Map mode in G.992.1 Annex Q.

Single
Upstream
Disable

7 Setting this bit to ‘1’ disables single upstream.

China loop 6 Setting this bit to ‘1’ improves the MOII china loop performance.

OL Disable 5 Setting this bit to ‘1’ disables overlapping spectrum.

ROL Disable 4 Setting this bit to ‘1’ disables reduced overlapping spectrum.

Bit
2

Bit 1 Bit 0 Hybrid Mode

0 0 0 Default setting, use GPIO to control line driver bias current.

0 0 1 GPIO is in tri-state mode, line driver bias current is controlled by on board
pull up/down circuit.

Hybrid Select 3:0

x x x Reserved.

Proceedings of the 4th WSEAS/IASME Int. Conf. on System Science and Simulation in Engineering, Tenerife, Spain, December 16-18, 2005 (pp177-185)

