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Abstract: - Partial discharge (PD) pulses detected on site usually take on various modes, and it is difficult for 
wavelet to select proper wavelet basis function in denoising. In particular, in the case of PD cluster with 
multi-mode, conventional wavelet denoising can hardly give satisfied result. Multi-wavelet is the new 
development of wavelet theory, extending the idea of wavelet by representing a signal with more than one 
scaling function, and outperforms wavelet in signal processing. In this contribution, we employ multi-wavelet to 
detect the partial discharge, investigating its denoising performance. For PD pulse of single-mode or PD cluster 
of multi-mode, we run massive simulations, using both multi-wavelet denoising and wavelet denoising. The 
results obtained demonstrate that, in comparison with wavelet, multi-wavelet denoising can preserve more 
signal features while removing noise from the measured data. In addition, multi-wavelet denoising needs no (or 
less) prior knowledge of partial discharge.  
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1 Introduction  
Partial discharge detecting technology is important 
for insulation assessment of power apparatus, and a 
great deal of work has been done in this field over the 
past decades. Partial discharge is weak electric 
signal, apt to be interfered by various noises existing 
on site, and usually the noises are so strong that PD 
signals are buried completely.  Therefore, for 
analyzing the partial discharge correctly, first of all, 
noises must be suppressed in a proper way[1]. 

At present, the most commonly used method for 
noise suppression is wavelet denoising. Wavelet 
analysis, famous for its multi-resolution analysis 
(MRA), can usually give good results in signal 
processing. However, in practical application, there 

still exist some problems, of which the well-known is 
the selection of wavelet basis function. The selection 
of wavelet basis function is application dependent, 
mainly based on waveform matching, and different 
wavelet basis function usually means different result. 
And it is the same case in denoising PD data. 
Difference in wavelet basis functions result in 
difference in denoised PD signals, and sometimes 
this difference is significant. 

For selecting the optimal wavelet basis function, 
Ma et al in [2] proposed a method based on cross 
correlation coefficient, however, this method needs 
prior knowledge of PD pulse waveform. In addition, 
PD pulses, subject to different discharge 
mechanisms, defect positions, propagation routes and 
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detection circuits, usually take on different 
waveforms[3]. How can we determine the optimal 
wavelet basis function when the detected PD pulses 
have more than one mode?   

For solving the problems mentioned above, a 
concept of wavelet subset was proposed recently [3], 
expecting lessening the effect of wavelet basis 
function by using several wavelet basis functions 
simultaneously. However, with this algorithm, 
another problem about PD signal reconstruction was 
brought.  

Multi-wavelet is a relative newcomer in the 
word of wavelet. It extends the idea of the wavelet by 
representing a signal with more than one scaling 
function. And these scaling functions can be 
designed to be simultaneously symmetric, 
orthogonal, have short supports and high vanishing 
moments, which cannot be achieved at the same time 
for wavelet using only one scaling function[4]. Thus, 
multi-wavelet offers the possibility of superior 
performance in signal processing applications, 
compared with wavelet. 

In this contribution, we employ multi-wavelet to 
extract PD pulses overwhelmed by noise, and 
investigate its performance in comparison with 
wavelet. 

The organization of this contribution is as 
follows. Section 2 gives a short introduction to 
multi-wavelet. Section 3 explains how multi-wavelet 
based denoising works. Section 4 discusses the 
performance of multi-wavelet based denoising for 
PD of various modes and shows some experiment 
results. And the final section draws the conclusion 
and points out the work in the future. 
 
 
2 Basic theory of multi-wavelet 
 Multi-wavelet is introduced as an extension to scalar 
wavelets, and many similarities exist between them, 
here we are about to introduce it briefly. 

The multi-wavelet basis uses translations and 
dilations of r （ r ≥ 2 ） scaling functions 

( )xφ1 , ( )xφ2 ,…, ( )xφM  and r mother wavelet 
functions ( )xψ1 , ( )xψ2 ,…, ( )xψM .If we write 
( ) ( ) ( ) ( )( )Txφ,...,xφ,xφx M21=Φ  and ( ) ( )( ,xψx 1=Ψ  
( ) ( ) ( ))T

M21 xψ,...,xψ,xψ , then we have 
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where kH  and kG  denote rr ×  filter matrices, 
whereas L and r  are the number of scaling 

coefficients and the multiplicity of multi-wavelet, 
respectively. 

For the sake of clarity, we use ,( 2 ,j,kj,k S=S  
T

2 )r,j,k,j,k ,...,SS and ( )T21 r,j,k,j,k,j,kj,k ,...,D,DD=D  to 
represent the low-pass and high-pass coefficients. 
The forward and inverse multi-wavelet transform can 
be recursively calculated by[5,6] 
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where j  denotes the resolution level. 
With the development of multi-wavelet theory 

over the past decade, multi-wavelet GHM, CL and 
SA4 etc., were constructed in succession by 
Geronimo, Chui et al[7-9]. In this contribution, as 
preliminary research, only the commonly used CL 
multi-wavelet ( 2=r ) is considered, corresponding 
filter matrices of CL can be found in literature[8]. 
 
 
3 Multi-wavelet denoising scheme 
 
3.1 Preprocessing of multi-wavelet 
The filters of multi-wavelet transform are in the form 
of matrix, and this demands the input signals must be 
in the form of vector, and therefore, scalar signals 
must be mapped into vector signals by preprocessing. 
Correspondingly, the denoised results must be 
mapped back into scalar signals by post-processing. 
The flowchart of multi-wavelet denoising is depicted 
in Fig.1[5]. 

 
Fig.1 Flow chart of multi-wavelet denoising 

 
Preprocessing can be done in two ways: one is  

using the prefilter[6, 10], and the other is balanced 
multi-wavelet basis[11]. Because prefilter can enable 
the resulting filterbank to possess desired 
approximation power and property such as 
orthoglnality, in practice it is preferred. For 
multi-wavelet transform, prefilter is not unique, 
proper selection of prefilter is important for the 
success in denoising. According to literature[4, 12, 
13], together with our massive simulations, best 
denoising performance can be obtained with repeated 
row prefilter and approximation prefilter. 
1) Repeated row prefilter 

In this case, the given scalar input of length N is 
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mapped to a sequence of N length-2vector. 
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where 0 denotes the initial decomposition level and 
δ  is a constant. The constant δ  is chosen so that the 
output from the highpass multi-filter is zero. 
2) Approximation prefilter 

The scalar input of length N, by preprocessing 
with this filter, can be mapped to a sequence of N/2 
length-2 vector. 
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where mP are 2×2 matrices. 

Both repeated row prefilter and approximation 
prefilter do well in practice. However, in comparison  
with the former, the latter computes less complexity, 
and hence in the successive sections only the latter is 
considered. Prefiltering process is invertible, and a 
post-filter can do the opposite process, i.e., mapping 
the data from multiple streams into one stream. The 
prefilter and post-filter used in our work can be found 
in literature [14]. 
 
3.2 Vector thresholding  
Proper selection of threshold is critical to the success 
of multi-wavelet denoising. In the past years, 
numerous work have been reported in this field[4, 
13-17], in which the results of Downie is significant. 
Based on Downie’s work, thresholding can be 
classified into two categories: scalar thresholding and 
vector thresholding. Results reported in literature [5, 
12, 14-17] and simulations we run indicate that 
vector thresholding is superior, and therefore in the 
following sections only vector thresholding is 
considered. 

A vector based thresholding scheme can be 
summarized as follows[12, 14]: 
1) Compute multi-wavelet coefficients kj ,D  

2) Compute the covariance matrix jV  used for 

decorrelating multi-wavelet coefficients. jV  is the 
distribution parameter of noise coefficients at 
resolution level j . It can be obtained by robust 
covariance estimation[12], or by deflator defined in 
[14], in the successive sections the latter is preferred. 
3) Define a new quantity kjj

T
kjkjθ ,

1
,, DVD −= , in the 

presence of only white noise, kjθ ,  will have a 
2χ distribution with freedom equal to r [12]. 

4) Estimate threshold jλ . Threshold estimator 
models, such as universal threshold estimator[14], 

vector threshold estimator[12], SURE estimator[13], 
LGCV estimator[15] and optimal threshold 
estimator[16], etc., are well suited to eliminate white 
noise. For suppressing indeterminate noise, a 
“robust” threshold estimator should be adopted: 

6745.0/ln2 jjj nm ∗=λ [2], where jλ , jn and jm  

are threshold value, number of coefficients, median 
value of coefficients at level j , respectively. 
5) Thresholding. For a given threshold jλ , the 

thresholding rule is ( )jkjkjkj f λθ ,ˆ
,,, ⋅= DD , where 

( )•f  denotes the conventional hard thresholding or 
soft thresholding. Hard thresholding produces an 
improved PD signal to noise ratio in comparison with 
soft thresholding[2]. And therefore, in the successive 
sections, only hard thresholding is considered. 
 
 
4 Multi-wavelet based denoising  
In order to evaluate the performance of multi-wavelet 
denoising in PD detection, the results of wavelet 
denoising are provided as well. 
 
4.1 Various modes of PD pulses 
Due to different discharge mechanisms, defect 
positions, propagation routes and detection circuits, a 
complex power apparatus usually generate PD pulses 
of various modes[3, 18]. In theory research, 4 
analytical expression are usually adopted to simulate 
these different PD pulses: damped single-exponent 
pulse (DSEP), damped resonant single-exponent 
pulse(DRSEP), damped double-exponent pulse 
(DDEP), and damped resonant double-exponent 
pulse(DRDEP)[18]. 

mode1 
τ/

11 )( teAtf −=                   (8) 
mode2 )2sin()( /

22 tfeAtf c
t πτ ×= −

     (9) 
mode3 )()( /2.2/3.1

33
ττ tt eeAtf −− −=              (10) 
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( ) ( )

( )tf
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c
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π

ττ
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2.23.1
44
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−= −−

               (11) 

where A  denotes the amplitude, whereas τ  and cf  
are time constant and resonant frequency, 
respectively. The waveform corresponded with the 4 
typical PD pulses are shown in Fig.2. 
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Fig.2 Typical PD pulse shapes: (a) DSEP, (b) 
DRSEP, (c) DDEP, and (d) DRDEP 

 
For PD pulse of any mode shown in Fig.2, we 

can select corresponding optimal wavelet basis 
function by using the method suggested in[2]. 
However, in the case of multi-wavelet, as it possesses 
several basis functions and its filterbank is in the 
form of matrix, we cannot calculate the cross relation 
coefficient between PD pulse and the basis functions. 
At present, no method is available for us to compare 
the denoising performance of multi-wavelet and 
wavelet directly, to our knowledge.The objective of 
denoising is to remove noise from the measured data 
as effectively as possible while preserving the signal 
features essential to the application[2]. In this sense, 
we adopt Mean square Error (MSE) as the criterion to 
measure denoising performance, together with 
massive simulations. As to wavelet based denoising, 
we choose db2 and db8 as the wavelet basis function, 
which are optimal in most cases[2], and wavelet 
coefficients are to be hard thresholded with the 
threshold 6745.0/ln2 jjj nm ∗=λ  proposed in[2]. 

 
4.2 Denoising PD pulses of single-mode 
Electrical interference on site can be classified into 
three categories: white noise, discrete spectrum 
interference(DSI), and periodic pulsive noise, in 
which white noise is the most common interference, 
and as preliminary study, in this contribution, the 
main interference to be suppressed is white noise. In 
this section, the main objective is to investigate the 
denoising performance of multi-wavelet for PD pulse 
of single mode. 

PD is in the form of pulse with very wide 
frequency band. In accordance with this high 
frequency attenuation characteristic, in simulation, 
we set the time constant τ  in the range of 100ns～
2.5us, with simulation step equal to 50ns; the peak 
value of  each PD pulse is 1mV, and resonant 

frequency cf  is 1MHz, unless otherwise specified, 
sampling frequency is 10MHz. The white noise 
superimposed has the normal distribution ( )23.0,0N , 
and the length of the simulation data is 1024. 

For either mode displayed in Fig.2, with the 
parameters above, we run the simulation 100 times 
independently, and final result is the mean of 100 
observations, see Fig.3-6. 

 
Fig.3 Multi-wavelet vs. wavelet in denoising PD of 
DSEP 
 

 
Fig.4Multi-wavelet vs. wavelet in denoising PD of 
DRSEP 
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Fig.5 Multi-wavelet vs. wavelet in denoising PD of 
DDEP 
 

 
Fig.6 Multi-wavelet vs. wavelet in denoising PD of 
DRDEP 
 

From Fig.3 and Fig.4, it can be seen clearly that, 
for PD of mode1, denoising performance with db2 is 
better than that with db8, but when dealing with PD 
of mode 2, db8 is superior to db2. This observation is 
consistent with the conclusion obtained in 
literature[2]. 

In Fig.5 and Fig.6, comparing the denoising 
performance of db2 and db8, however, it is difficult 
to determine which is better. Such as in Fig.6, when 
time constant lies between 800ns and 1.2us, db2 
seems better, however, when time constant falls into 
the area above 1.5us, db8 turns to be superior. In fact, 
from this, we can find a problem that cross relation 
coefficient cannot determine an optimal wavelet 
basis function absolutely. It is because that cross 
relation coefficient is calculated only from a typical 
and calibrated waveform of PD pulse, with the 
variety of time constant and resonant frequency, such 
a typical PD pulse in fact can hardly exist, in other 
words, cross relation coefficient cannot justify the 
performance in all cases. 

Now, we compare the denoising performance of 
multi-wavelet and wavelet. From Fig.3-6, it is 
obvious that for PD pulse of any mode, multi-wavelet 
CL is superior to wavelet db2 or db8 in the 
suppression of white noise. 

In summary, from the results above we can 
conclude that: for PD pulse of any mode(shown in 
Fig.2), the denoising performance of multi-wavelet 
CL outperforms that of wavelet db2 and db8. 
 
4.3 Denoising PD pulses of multi-mode 
In the previous section, the denoising results for PD 
pulse of single mode are provided, and in this section, 
we will give the results for PD pulses of multi-mode. 

It aims to further confirm the denoising performance 
of multi-wavelet, what is more, investigate the 
performance under different noise level. 

In the simulation, 4 PD pulses of different 
modes, either in one form of Fig.2, are selected and 
arranged in sequence, corresponding time constants 
are 1µs, 1µs, 2.5µs, 2.5µs, respectively. Pulse peak 
value of either pulse is 1mV, with resonant frequency 
and sampling frequency is the same as previous 
section. The interval between two successive pulses 
is 512 points and the length of the simulation data is 
2048. The interference superimposed is white noise 
with standard deviation ranging from 0.01 to 0.5mV 
(step equal to 0.01mV). It is the same as before, 
simulations are conducted repeatedly independently 
100 times, and the eventual result is the mean of 100 
observations, see Fig.7. 

 
Fig.7 Multi-wavelet vs. wavelet in denoising PD 
cluster under different noise level 
 

From Fig.7, it can be seen that, with the increase 
of noise level, the denoising performance degrades. 
However, the denoising performance of multi- 
wavelet CL outperforms wavelet db2 and db8 all the 
while.  
 
4.4 A typical instance 
For the sake of clarity, we give an instance (see Fig.8 
(a)), typical for multi-mode PD signals. The original 
PD signal and corresponding simulation parameters 
can be found in literature[3], and in the interest of 
concision, the parameters are no more provided here. 

Consistent with [3], besides white noise, we add 
DSI to the original PD signal. Furthermore, the 
interferences added are much stronger than those in 
[3]. 
 (a) White noise has a ( )24.0,0N  distribution, 
 (b)  DSI can be formulated as: 

)25.1sin()21.1sin(
)2850sin()2600(sin(3.0)(

tMtM
tktktf DSI

××+××+
××+×××=

ππ
ππ
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 (11) 
The PD pulses, superimposed by DSI and white 

noise, are shown in Fig.8 (b), with signal-to-noise 
ratio equal to -11.4dB.The length of the data is 2048. 

 
Fig.8 Multi-wavelet vs. wavelet in denoising typical 
multi-mode PD cluster: (a) simulation PD pulses; (b) 
corrupted signal; (c) denoised result with db2 
wavelet; (d) denoised result with db8 wavelet; (e) 
denoised results with CL multi-wavelet. 

 
From the denoised results above, it can be 

observed that, multi-wavelet CL can preserve 
complete information of PD pulses in comparison to 
wavelet db2 and db8. 
 
4.5 Processing of on-site data 
The on-site data is derived from the PD monitoring 
system installed on the generators of BaoGang power 
plant[1]. The work group led by Huang has 
developed two types of online PD monitoring 
systems, HSB-1 and HSB-2, successively from the 
late of last century until now. The sampling 
frequency of HSB-1 is 6.67MHz, and that of HSB-2 
is 25MHz. In the following process, we select one 
data set from either system, the data length of HSB-1 
is 8192, and that of HSB-2 is 32768. The original 
data and the processed results are illustrated in Fig.9 
and Fig.10. In either plot, results obtained by using 
wavelet db2, wavelet db8 and multi-wavelet CL are 
provided together. 

From Fig.9 and Fig.10, it can be observed that 
CL multi-wavelet can preserve more PD pulses when 
suppressing the interference in comparison to 
wavelet db2 or db8. Although not as much obvious, it 
is consistent with the result obtained in the previous 
section. 
 

 
Fig.9 Multi-wavelet vs. wavelet in denoising data of 
HSB-1 monitoring system: (a) original on-site data; 
(b) denoised result with db2 wavelet; (c) denoised 
result with db8 wavelet; (d) denoised result with CL 
multi-wavelet. 

 
Fig.10 Multi-wavelet vs. wavelet in denoising data of 
HSB-2 monitoring system: (a) original on-site data; 
(b) denoised result with db2 wavelet ; (c) denoised 
result with db8 wavelet; (d) denoised result with CL 
multi- wavelet. 
 
 
5 Conclusion and future work 
Multi-wavelet is the new development of wavelet 
theory, and possesses more advantages than classical 
wavelet in signal processing. In this contribution, we 
employ it to detect the partial discharges 
overwhelmed by interferences, mainly by white 
noise. Through massive simulation, together with 
on-site data processing, it can be concluded that: 
1) Compared with wavelet, multi-wavelet based 
method needs no (or less) prior knowledge of PD 
pulses, 
2) Compared with wavelet (db2 or db8), 
multi-wavelet (CL), depending less on the waveform 
of the PD pulses, excels in extracting PD pulses of 
various modes, 
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3) From the results obtained, multi-wavelet (CL) 
outperforms wavelet at least in the suppression of 
white noise. 

With the development of multi-wavelet, various 
new multi-wavelets have been reported, which is 
optimal and how to determine it demand further 
research. Besides, in this contribution, we deal 
mainly with the suppression of white noise; in 
practice, DSI is another important interference, how 
to eliminate it with multi-wavelet transform still need 
much more work. 
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