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Abstract: - This work proposes a known-plaintext attack on the Shrinking Generator through its characterization 
by means of Cellular Automata. It is based on the computation of the characteristic polynomials of sub-automata 
and on the generation of the Galois field associated to one of the Linear Feedback Shift Registers components of 
the generator. The proposed algorithm allows predicting a large number of unseen bits of the keystream sequence, 
thanks to the knowledge of both registers lengths, the characteristic polynomial of one of the registers, and some 
keystream bits. 
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1   Introduction 
Stream ciphers may be generally defined as simple 
bitwise additions between the plaintext stream and the 
running keystream, [1]. Nonlinear combinations of 
Linear Feedback Shift Registers (LFSRs) are the most 
frequently used running key generators because if they 
are properly designed, keystream sequences easily 
exhibit some ideal characteristics such as long period 
and balanced statistics. However, in general it is much 
more difficult to guarantee their unpredictability. 
From a cryptanalysis point of view, stream ciphers 
must be resistant against known-plaintext attacks. In 
these attacks, it is assumed that cryptanalysts may 
intercept some bits of the keystream, and their goal is 
to get some information about the seed of the 
keystream generator or about the unseen keystream 
bits, faster than exhaustive search of all possible keys. 

The Shrinking Generator (SG) is a nonlinear 
combinator based on two LFSRs so that the bits of one 
output are used to determine whether the 
corresponding bits of the second output are used as 
part of the overall keystream, [2]. SGs are simple and 
scalable generators that produce pseudorandom 
sequences with good security properties. There have 
been several approaches for attacking the SG. A basic 
divide-and-conquer attack requiring an exhaustive 
search through all the possible initial states and 
feedback polynomials of the selector LFSR was 
proposed in [3]. The authors of [4] described a 
correlation attack targeting the second LFSR. A 

correlation attack based on searching specific 
subsequences of the output sequence was introduced 
in [5]. More recently, a distinguishing attack 
applicable when the second LFSR has a low-weight 
feedback polynomial was investigated in [6]. 
However, despite all these attacks, the SG continues 
being considered resistant against efficient 
cryptanalysis.  

Cellular Automata (CA) are discrete 
mathematical models in which a lattice of finite state 
machines, called cells, updates itself synchronously 
according to local rules, [7]. Because of their 
simplicity, regularity, modularity and cascadable 
structure with local neighbourhood, CA are ideally 
suited for VLSI implementation. CA have been 
proposed both for secret and public key cryptography 
[8], [9], [10]. Also cryptanalysis of certain CA based 
keystream generators have been published [11], [12].   
Two different works have explored the use of CA as 
models for predicting pseudorandom binary 
sequences. In [13], a Cellular Automata-Based model 
for the Shrinking Generator was proposed. Such a 
work may be considered the starting point of this 
research.  

The structure of this work is as follows. Next 
section gives relevant background about the basic 
structures we are dealing with: Linear Hybrid Cellular 
Automata and Shrinking Generators. The model for 
the Shrinking Generator that is used in this work is 
described next. Sections 3 and 4 introduce the 
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theoretical basis of the proposed CA-based 
cryptanalysis of the SG and the full description of the 
algorithm, respectively. Finally, in Section 5 several 
conclusions and open questions are drawn.  
 
2   Preliminaries 
Cellular automata are finite state machines that consist 
of arrays of n cells. According to local interaction 
rules, the cells are updated synchronously in discrete 
time steps. The state of a particular cell at the next time 
step is determined by the current states of a 
surrounding neighbourhood of cells. The transitions 
are usually specified in the form of a rule table that 
defines the cell's next state for each possible 
neighbourhood configuration.  
The simplest nontrivial CA are binary and 
one-dimensional, with two possible states per cell and 
a cell's neighbours defined as the cell on either side of 
it. These automata were called elementary cellular 
automata] by Wolfram, who studied extensively their 
properties [14]. A cell and its two neighbours make 
out a neighbourhood of 3 cells, so there are 8 possible 
patterns, and 256 possible rules. These 256 CAs are 
generally referred to using a standard naming 
convention invented by Wolfram. The name of a CA is 
a decimal number which, in binary, gives the rule 
table. For example, according to rule 90, the value of a 
particular cell i is the sum modulo 2 of the values of its 
two neighbours cells on the previous time step t. Rule 
150 also includes the value of cell i at time step t.  

Null CA are those where cells with permanent 
null content are supposed adjacent to the extreme cells 
of the CA. Binary CA where the neighbourhood 
dependence is just on XOR operations are called linear 
CA. In [15] it was shown that a three-neighborhood 
linear CA can be represented by a tridiagonal 
characteristic matrix - a matrix which has the elements 
of its diagonal and two off-diagonals as non-zero. If in 
a CA different rules are applied over different cells, 
then it is called a hybrid CA.  Linear Hybrid Cellular 
Automata are usually denoted with the acronyms 
LHCA. 

The matrix algebraic tool employing minimal 
and characteristic polynomials of the characteristic 
matrix showed various interesting features of CA 
behaviour. The first important finding was the 
categorization of linear CA into group and non-group 
CA. In a group CA each of the states has a single 
predecessor which is not true for non-group CA. The 
most effective application of null group CA has been 
proposed in the field of pseudorandom pattern 
generation, since the authors of [18] showed that 
maximum length CA - group CA with all non-zero 
states lying in a single cycle - produce high quality 
pseudorandom patterns. 

It has been established that the maximum length 
cycle can be produced only if the characteristic 
polynomial is primitive as well as only if rule 90 
and/or rule 150 is used to construct the CA, [16]. On 
the other hand, the authors of [17] examined the 
concatenating maximum length CA to obtain longer or 
smaller ones maintaining that property. In this 
research only one-dimensional 90/150 null LHCA are 
considered. Binary string R1 R2 ... Rn are here used to 
represent n-cell LHCA, where Ri is either 0, if cell i 
uses rule 90, or 1, if cell i uses rule 150. 

Given an irreducible polynomial, several 
algorithms have been developed to find its 
corresponding LHCA. The most recent one, proposed 
in [16], applies the Euclidean algorithm to compute 
the LHCA in a polynomial running time, so it is 
sufficiently fast to generate LHCA for polynomials of 
very large degree. 

On the other hand, in [18], a synthesis algorithm 
based also on the Euclidean algorithm which allows 
computing in linear time the characteristic polynomial 
for any given LHCA was introduced. In this work such 
an algorithm will be called Polynomial-Synthesis 
Algorithm. When the characteristic polynomial of a 
CA is primitive, the sequence produced by any cell of 
the CA can be obtained from phase shift of any other 
sequence produced from another cell of the same CA, 
[19]. The converse may not be true. 

The shrinking generator was introduced by 
Coppersmith, Krawczyk, and Mansour [2]. The SG is 
a well-known keystream generator composed of two 
LFSRs: a selector register that produces a sequence 
used to decimate the sequence generated by the other 
register. The selector register is here denoted by S, its 
length is LS, its characteristic polynomial is PS(x) and 
the sequence it produces is {si}. The decimated 
sequence is denoted {ai}, the second register that 
produces it is A, its length is LA and its characteristic 
polynomial is PA(x).So, the shrunken sequence {zj} 
may be defined according to the following rule: 
if si=1 then zj=ai 
if si=0 then ai is discarded 

Despite its simplicity, the SG has remained 
remarkably resistant to cryptanalysis because there are 
no known attacks that are feasible if both LFSRs are 
too long for exhaustive search. 
 
3   The CA-Model for the Shrinking 
Generator 

In this work we consider the linear model of the 
SG described in [13] in terms of LHCA. The 
equivalent LHCA obtained for any SG through the 
algorithm described there and here denoted 
CA-Synthesis Algorithm, are formed by 
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concatenations of basic primitive LHCA and their 
mirror images, with one or two modifications 
(complementations of rules) in each LHCA 
component. In particular, we have found that the 
numbers of modifications in the described model are 
two in all but two concatenated LHCA, and only one 
modification in the two extreme LHCA.  

The outputs of the CA-Synthesis Algorithm are 
two equivalent LHCA for any SG with selector LFSR 
of length LS and decimated LFSR sequence produced 
by A. The characteristic polynomial of the equivalent 
LHCA is the same as the one of the original SG, that is 
to say, P(x)N. Since the equivalent LHCA are only 
related to the LFSR A and the length LS of the LFSR S, 
and the modifications consist exclusively in 
reconfiguring a rule 90 cell to a rule 150 cell or vice 
versa, the described CA-model of the SG provides a 
great economy in hardware by allowing the use of the 
same basic machine for many different SGs. 

Since the number of concatenations is between 
2L

S
-2 and 2L

S
-1, and the length of the basic primitive 

LHCA is LA, we have that the length of the equivalent 
LHCA is given by an integer L such that 2L

S
-2 and LA 

2L
S

-2 < L ≤ LA 2L
S

-2. Consequently, in order to generate 
the whole shrunken sequence in one of the extreme 
cells of the equivalent LHCA it would be necessary to 
determinate uniquely the initial state of the equivalent 
LHCA which is able to produce it, and to get this, it 
would be necessary to intercept L shrunken bits. So, 
although we have a linear model of the SG, in order to 
break the SG with it, we need as many intercepted bits 
as the linear complexity of the SG.  

This work provides an efficient way to use the 
CA-model of the SG in order to guess unseen bits of 
the shrunken sequence correctly from the interception 
of a number of bits lower than the linear complexity of 
the SG.  
 
4   Theoretical Basis 
Let Z = Z0 = z0, z1, z2, ... be the output sequence of the 
SG whose characteristic polynomial P(x)N ∈ GF(2)[x] 
has degree L. Moreover, Zt = zt, zt+1, zt+2, ... denotes the 
t−th phase shift of Z. Finally, let α ∈ GF(2LA) be a 
root of P(x).  
4.1 Chained Sub-triangles 
The equivalent LHCA may generate the shrunken 
sequence in any of its cells. Consequently, given a 
shrunken sequence z0, z1, z2, ... zr  it is always  possible 
to assume, without loss of generality, that its 
generation is at the left extreme cell. According to this, 
assuming the knowledge of r bits of the shrunken 
sequence, it is always possible to reconstruct r 
sub-sequences of length r − i + 1 corresponding to the 
rules Ri with 1 < i ≤ r. Since rules 90 and 150 are 

additive and the equivalent LHCA is null boundary, 
for any rule Ri, the previous reconstruction is made 
thanks to sums of some elements of the shrunken 
sequence, whose sub-indexes correspond to the 
exponents of the unknown in the characteristic 
polynomial of the LHCA R1 R2 ... Ri-1.  

Consequently, if this sub-sequence of length r − 
i+1 is used recursively as left extreme sequence of the 
equivalent LHCA in order to reconstruct in the same 
way as before, r−i+1 sub-sequences of length r−2i+2 
corresponding to the rules Ri with 1 < i ≤ r − i + 1, we 
obtain in the same cell i: zt+2k1 + zt+2k2 + · · · + zt+2kri. 
In this way, if the hypothesis 
Zd = Z2k1 + Z2k2 + · · · + Z2kri    (1) 
is fulfilled, then a d−th phase shift of the shrunken 
sequence reappears at cell i of the equivalent LHCA 
each second chained sub-triangle generated as 
explained in the previous paragraph. Furthermore, it is 
easy to see that if hypothesis (1) is satisfied, then each 
2j-th chained triangle provides r−2ji+2j bits of a jd−th 
phase shift of the shrunken sequence. On the other 
hand, note that hypothesis (1) may be easily 
generalized to guarantee the reappearance of a d-th 
phase shift of the shrunken sequence at cell i in each 
2l-th chained sub-triangle.  
4.2 Finite Field 
It is well-known that if {sn} is a sequence produced by 
a LFSR whose characteristic polynomial is 
irreducible, and alpha is a root of such a polynomial, 
then each element sn of the sequence may be written as 
the trace of the n-power of alpha [20]. 

Since P(x) is a LA-degree primitive polynomial, 
the successive powers αi,  0 ≤ i<2 LA -1 generate the 
finite field   GF(2 LA ) and their respective traces equal 
the corresponding elements si of the PN-sequence 
associated to the polynomial P(x).  

On the other hand, since the trace function is 
linear and all the powers of alpha may be expressed in 
terms of the first LA -1 powers, the association 
between powers of alpha and elements of the 
PN-sequence may be transferred to linear relations 
between different phase shifts of the PN-sequence and 
the first LA -1 phase shifts.  

From [13] we know that the shrunken sequence is 
composed of interpolations of different phase shifts of 
the PN-sequence associated to the polynomial P(x), so 
that the element si of the basic PN-sequence 
corresponds to the shrunken bit ZiN. Consequently, 
any linear relation between different phase shifts of 
the PN-sequence deduced as explained in the previous 
paragraph corresponds to a linear relation between 
different phase shifts of the shrunken sequence, which 
are the same phase shifts obtained for the 
PN-sequence, but multiplied by N. 
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5   Algorithm  
Starting from the theoretical basis of the previous 
section, in the following we describe an efficient 
algorithm based on the generation of the finite field  
GF(2LA), which allows testing the generalization of 
hypothesis (1) obtained in linear time with the 
Polynomial-Synthesis Algorithm. The proposed 
cryptanalysis algorithm requires as input an 
intercepted shrunken sequence produced by a SG 
whose structure must be known, and provides as 
output a variable number of unseen shrunken bits. 
Algorithm: 
Input: The lengths LS and LA, and the characteristic 
polynomial of A, PA(x) corresponding to the LFSRs S 
and A components of the SG. 
Off-line Phase: 
Step 1: Using the CA-Synthesis Algorithm, compute 
the two equivalent LHCA that are valid for any SG 
with selector LFSR of length LS and decimated LFSR 
sequence produced by A. 
Step 2: Using the primitive LA,-degree polynomial 
P(x) associated to the basic LHCA, generate the finite 
field GF(2LA) formed with the exponentiation of one 
root of such a polynomial, alpha, and express each 
element of GF(2LA), αe as a LA-length array E=[e0,e1, 
... ,eLA-2,,eLA-1]  where ei=i iff αi is present in the 
expression of  αe. 
Step 3: Using the Polynomial-Synthesis Algorithm, 
calculate the 2*L characteristic polynomials for all 
possible sub-LHCA considering from left rule to each 
rule of both LHCA obtained in the previous step, and 
express them as  2*L different (L+1)-length arrays 
D=[d0,d1, ... ,dL-1,,dL] where di=i iff i is an exponent of 
the unknown in the corresponding polynomial. Using 
the finite field generated in the previous step, 
decompose the array D as an equivalent linear 
expression a*B+C with a being a power of 2, and B 
and C two arrays such that B=[0, b1, ... ,bLA-2,,bLA-1] 
and C=[c,c,... ,c]. Consider B as the output of this step. 
Step 4: For each array B=[0, b1, ... ,bLA-2,,bLA-1] 
obtained in Step 3, search it within all the LA-length 
arrays obtained in Step 2, and if found it, associate to 
the corresponding rule the (N/a)*(a*e+c)-th phase 
shift for the N/a-th sub-triangles.  
On-line Phase: 
Step 5: Once intercepted r shrunken bits, proceed with 
them by generating the chained sub-triangles indicated 
in Step 4, to obtain for all successful rules u, bits of 
different phase shifts of the shrinking sequence. 
Output:  A variable number of bits of different phase 
shifts of the shrunken sequence. 

Note that all the computations made for any 
LHCA are useful for any other LHCA with the same 
basic CA and more concatenations, that is to say, the 
outputs of steps 2, 3 and 4 obtained for an equivalent 

LHCA with characteristic polynomial (P(x))N1 

continue being correct for any other equivalent LHCA 
with characteristic polynomial (P(x))N2, with N1|N2. 
Consequently, the cryptanalysis of a SG with LFSRs 
S1 and A1 are useful for the cryptanalysis of any other 
SG with LFSRs S2 and A2 such that its corresponding 
characteristic polynomial is (PA(x)) N2 with N1|N2. 
 
6   Conclusions and Open Problems 
This paper has introduced a known-plaintext attack on 
the shrinking generator that does not require too many 
intercepted bits in order to predict with absolute 
certainty approximately the same number of unseen 
shrunken bits. Any shrinking generator leading to a 
successful off-line phase of the algorithm, which 
produces the deduction of many unseen shrunken bits, 
should be rejected for its cryptographic use. Therefore, 
the proposed algorithm is useful both for cryptanalysts 
and for cryptographers who use the shrinking 
generator. With respect to the efficiency of the 
proposal, since both synthesis algorithms used within 
the cryptanalysis are linear, there may be deduced that 
communication complexity and computational costs 
of the attack are affordable. One of the subjects that 
are being object of work in progress is the modelling 
of other keystream generators through concatenations 
of maximum length CA. 
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