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Abstract:-This paper presents a neurofuzzy structure for on line modeling of Permanent Magnet Synchronous 
Machines (PMSM). The model structure is based on recurrent fuzzy neurons (RFN) presented in [1,2], which 
are used to synthesize a single layer RFN network for nonlinear discrete state space representation of the 
PMSM dynamics in the d,q rotating reference frame. The proposed scheme allows obtaining on line, a time 
varying nonlinear model with an appropriate structure for linearizing control laws design. The efficiency of the 
neurofuzzy structure for PMSM modeling is illustrated by computer simulations. 
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1 Introduction 
Permanent Magnet Synchronous Machines are often 
used in variable speed and low power applications 
such as servomotors and special-purpose alternators. 
Their main advantages over conventional 
synchronous machines is the absence of excitation 
windings [3,4]. PMSM dynamics involve highly 
nonlinear behaviors. One main source of 
nonlinearities is the windings inductances. What 
complicates matters further is that the saturation 
levels (and nonlinearities) are function of the 
mechanical load. These nonlinearities and uncertain 
variations in inductances make it difficult to 
synthesize an appropriate nonlinear control task. 
Therefore, the control laws for such a kind of 
machine are usually designed in terms of simplified 
models that do not take into account the complete 
system behavior. Some contributions on 
identification and analytical modeling of PMSM 
inductances may be found in [4,5]. In [4] it is also 
presented a torque control technique which 
considers the inductance harmonics identification to 
compensate torque pulsations in closed loop. 
Neural Networks and Fuzzy Logic have been widely 
used for nonlinear modeling and control purposes. 
Conventional feed-forward multilayered neural 
networks facilitate nonlinear mapping from an input 
space to an output space. These network systems 
involve a training phase and their ability to 
synthesize complex nonlinear maps may vary with 
the number of layers and neural elements in each 
layer. Most of the times, it is difficult to know in 

advance the exact number of neural elements 
necessary and sufficient to achieve an adequate 
mapping. Since all the initial weights are randomly 
assigned and the error weight space might have 
local minima, there may be a significant learning 
error even after a long learning period. Referring to 
modeling of dynamic systems, a neural structure 
with recurrent terms may prove to be a better 
alternative than a feed-forward neural structure. 
Even more, for some problems a small feedback 
system is equivalent to a big, and possibly infinitely 
large, feed forward system [6]. Some other results 
that refer to modeling and control of dynamic 
systems using recurrent neural networks are 
reported in [7,8]. In the present work, a single layer 
network of recurrent fuzzy neurons [1,2] has been 
used to achieve on line modeling of permanent 
magnet synchronous machines (PMSM) in the d,q 
rotating reference frame. The RFN structure 
possesses fuzzy synapses and recurrent connections 
that make it a good candidate for on line modeling 
of complex nonlinear systems. The paper is 
organized as follows. In Section 2 the RFN based 
modeling mathematical formulations are presented, 
in Section 3 it is exposed the application of the RFN 
technique for PMSM on line modeling, Section 4 
presents simulation results and Section 5 gives some 
concluding remarks. 
 
2 The Recurrent Fuzzy Neuron  
The Recurrent Fuzzy Neuron (RFN) is a structure 
with fuzzy synapses and recurrent connections 
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which provide dynamic characteristics to the fuzzy 
neuron, making it a good candidate for on line 
modeling of nonlinear systems. The structure of the 
RFN is shown in Figure 1 [1,2]. 

 
Fig.1 The Recurrent Fuzzy Neuron 

 
2.1 RFN Neural Networks for On Line Modeling 
of Nonlinear Systems. 
 
The RFN presented in [1,2] may be used to model a 
variety of nonlinear SISO and MISO systems using 
only one neuron for input/output representation. The 
feed-forward and recurrent connections fi and rf~ , 
respectively, possess, nonlinear synaptic weights 
which are determined by fuzzy IF-THEN rules. The 
synapse output is obtained by fuzzy inference with 
defuzzification and therefore, the output of this RFN 
may be represented by 
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where ui, i=1..m corresponds to the i-th feed-
forward neural input at the time k, e(k-r) r=1..l, is a 
recurrent term associated with the neuron output 
error at  time k-r and l must be, at most, equal to  the 
estimated system order. The nonlinear synapses are 
defined as follows: 
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where ijμ  and rjμ~  correspond to the fuzzy sets that 

characterize  and   respectively ,  

and 
iu )( rke − )(kwij

)(~ kwrj are the consequents singleton weights 
associated to the nonlinear synapses IF THEN rules. 
In [1,2] it is proved that only one RFN is enough to 
model complex nonlinear systems with only one 
output, therefore a single layer RFN neural network 
will be able to synthesize nonlinear models for 
multiple output complex systems. 
 
2.1.1 RFN based State Vector Model 
In order to achieve on line RFN based modeling 
using a discrete state space representation, it is 
necessary to synthesize single layer RFN neural 
networks as follow: 
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Where u(k), x(k), y(k), e(k) and ey(k) are discrete 
time sequences, x(k) = [x1(k),x2(k),….,xn(k)]T is the 
state vector, u(k) = [u1(k),u2(k),….,um(k)]T the input 
vector, y(k) = [y1(k), y2(k),…,ys(k)]T  the output  
vector,  e(k)=[e1(k), e2(k),......,en(k)]T the state  error 
vector and  ey(k)=[ey

1(k), ey
2(k),......,ey

s(k)]T  the 
output error vector. This definition is valid if and 
only if x(k) is completely accessible.  Hence 
equations (3) represent a m-input s-output nonlinear 
system of order n and it may be synthesized using 
single layer RFN neural networks for N1 and N2. 
For N1 synthesis: 
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Where lf  and  correspond to the nonlinear feed-

forward connections and 

jf̂

if
~

 correspond to the 
nonlinear recurrent connections. N1 will be a single 
layer neural network with i=1...n neurons.  
For  N2   synthesis:                
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Where  and  correspond to feed-forward 

connections and 

y
lf y

jf̂
y

vf~ correspond to recurrent 
connections respectively. N2 will be a single layer 
neural network with v =1...s neurons. 
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2.2 RFN Neural Network Learning Algorithm 
The general learning algorithm is an extension of 
results presented in [1,2]. This is in order to make it 
applicable for multi-output systems. The training is 
defined in terms of a steepest descent method, 
where the weight changes are achieved for a set of 
input patterns P. The error index is given by the 
average squared error for P patterns in the following 
way: 
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Where yvq(k) is the v-th RFN network output, yvq

d(k) 
is the v-th desired output, corresponding to pattern q 
at time k and evq(k) is a learning error between the  
v-th RFN network output and the v-th desired output 
at time k, S is the number of RFN network outputs. 
 
During the learning sessions, the updating rule, for 
feed-forward connections, is given by: 
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For recurrent connections, the updating rule is given   
as: 
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where the ijμ  and rjμ~ terms correspond to 

membership functions associated to weights  

and 

)(kwij

)(~ kwrj , respectively. 
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In order to provide dynamic characteristics to the 
updating rule for recurrent connections, equation 
(11) is determined through the successive 
application of the chain rule. Without loss of 
generality, only first order terms are considered and 
therefore  may be represented by the 
following first order time-varying linear system: 
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3 On Line Neurofuzzy Modeling of 
PMSM 
In Permanent Magnet Synchronous Machines 
(PMSM) the exciting coil is replaced with 
permanent magnets. The continuous excitation 
causes the motor to act as a sub-excited synchronous 
engine. Due to this characteristic, the permanently 
excited motor can be easily integrated into already 
existing systems without limitations, this make this 
kind of machine attractive for variable speed and 
low power applications. PMSM may operate in 
motoring or generating mode. The mode of 
operation is determined by the sign of the 
mechanical torque (positive for motoring, negative 
for generating). The electrical and mechanical parts 
may be represented by a   second order state space 
model. The model assumes that the flux established 
by the permanent magnets in the stator is sinusoidal, 
which implies that the electromotive forces are also 
sinusoidal [3].  The Electrical System in the d,q 
rotor reference frame is described by [3]: 
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where 
Lq,, Ld:  q and d axis inductances  
R:  resistance of the stator windings 
Id, Iq :  q and d axis currents 
vd,  vq:  q and d  axis voltages 
wr:  rotor angular velocity 
λ:   amplitude of the flux induced by the permanent  
      magnets of  the rotor in the stator phases 
np:  number of poles pairs 
Te:   electromagnetic torque 
 
The mechanical system is described by: 
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where  
J:   combined inertia of rotor and load 
F:   combined viscous friction of rotor and load 
θ:   rotor angular position 
Tm: Mechanical Torque 
 
In order to illustrate the efficiency of the proposed 
neurofuzzy algorithm for on line modeling of 
PMSM, the dynamical nonlinear system described 
above is considered for computer simulations. 
The nonlinearities associated to PMSM make it 
difficult to synthesize appropriate nonlinear control 
tasks. This is because windings’ inductances and 
saturation levels are function of the mechanical 
load. Therefore, the control laws for such a kind of 
machine are usually designed in terms of simplified 
models that do not take into account the complete 
system behavior. In order to deal with such 
difficulties it is proposed a time varying discrete 
state space model based on RFN neural networks 
which enables achieving on line modeling of the 
PMSM using  current, voltage and speed 
measurements.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Open Loop On Line RFN Modeling Scheme 

Fig. 2 illustrates the proposed scheme where P(θ) is 
the Park transformation [4]: 
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The presented open-loop modeling scheme (Fig. 2) 
employs a RFN algorithm. This neurofuzzy 
algorithm, however, may also be used in a closed 
loop scheme for nonlinear control purposes. Here, it 
has been only considered the estimation of currents 
and speed because position can be obtained by the 
speed integration. 
 
According to equations (3) and the previous 
knowledge about the system, the discrete RFN 
nonlinear model for PMSM may be defined as 
follow: 
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where x(k) = [x1(k),x2(k),x3(k)]T=[Id(k),Iq(k),wr(k)]T 

is the state vector, u(k) = [u1(k),u2(k)]=[vd(k),vq(k)]T 
the input vector, y(k) = [y1(k),y2(k),y3(k)]T= 
[x1(k),x2(k),x3(k)]T the output  vector,  e(k)=[e1(k), 
e2(k),e3(k)]T the state  error vector. In this case it is 
assumed that it is possible to measure, the currents 
and speed therefore the output vector has been 
linearly defined.   
In order to obtain a nonlinear model that may be 
attractive for linearizing control laws synthesis and 
taking into account the information of the 
continuous model equations (14) and (15), equation 
(17) may be redefined in the following way: 
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Where T is the sample time and Ld0 and Lq0 are the q 
and d axis inductances fundamental terms.  
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3 Simulation Results 
The open loop on line modeling scheme was 
simulated using Matlab and Simulink. The 
continuous system was simulated with a fixed step 
size T=0.0001 sec. The RFN algorithm takes 
samples from the continuous system each step to 
achieve the modeling task.  In order to provide a 
more realistic behavior to the continuous system and 
also to verify the efficiency of the RFN algorithm, q 
and d axis harmonic inductances of six order were 
included [4]. The machine parameters used for this 
simulation are obtained from [4] as follows: 
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The RFN algorithm requires the definition of fuzzy 
sets for each variable according to the possible 
machine operational ranges, these fuzzy sets must 
be complementary triangular functions [1,2] and are 
shown in Fig. 3 and Fig. 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Fuzzy Sets for State Space Variables 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Fuzzy Sets for Input Variables and Errors 
 

The open loop modeling was achieved using both 
sinusoidal and step input voltages. The RFN 
structure has 3 recurrent neurons, the learning rate 
that provided the best results was α=0.3 and the 
number of patterns per time instant P=1.  
 
3.1 Simulation Case 1: Sinusoidal Input Voltages 
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Fig.5 On Line Modeling Simulation Results for 
Sinusoidal Input Voltages 
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3.2 Simulation Case 2: Step Change Input 
Voltages 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6 On Line Modeling Simulation Results for Step 
Change Input Voltages 

 
For this simulation case it is observed that 
estimation errors get bigger during the step changes 
due to the high rate of such changes. However, the 
RFN algorithm corrects the deviations, successfully 
achieving the on line modeling task. 
 

4 Conclusions 
 A neurofuzzy scheme, based on recurrent fuzzy 
neurons [1,2], for on line modeling of Permanent 
Magnet Synchronous Machines (PMSM) has been 
presented. The proposed scheme allows obtaining 
on line, a time varying nonlinear model with a 
discrete state space representation in the d,q rotating 
reference frame, with an appropriate structure for 
linearizing control laws design. The efficiency of 
the neurofuzzy scheme for PMSM modeling was 
illustrated by computer simulations. 
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