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Abstract:- In this contribution, we extend the work poineered by Chen[4], investigating the bigger neighborhood, 
and further employ the neighbor multi-wavelet denoising scheme to detect partial discharge signals, which are 
usually overwhelmed by excessive on-site noise.  By massive simulation, the relation curve among mean square 
error (MSE), neighborhood and exponent of neighboring coefficient is derived. Based on the relation curve, the 
optimal neighborhood and index of neighboring coefficients are obtained. What is more, we apply the neighbor 
multi-wavelet denoising, together with the optimal parameters, to process partial discharge. The obtained result 
is promising and the derived parameters are justified. 
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1 Introduction 
Detection of partial discharge is an important means 
of monitoring the insulation condition of large power 
apparatus; while in the detecting process, denoising 
always plays the significant role, because partial 
discharge is weak electric signal, usually 
overwhelmed by the noise existing on site. Without 
denoising, we can hardly analyze the partial 
discharge with any accurate result [1]. 

In the past decade, the most commonly used 
method for denoising is wavelet transform. Wavelet 
transform can provide multi-resolution analysis, and 
outperforms other methods in processing 
nonstationary signals, in which partial discharge is 
typical. However, with the development of wavelet 
theory, there appears multi-wavelet. According to the 
massive results reported, multi-wavelet is superior to 
wavelet in signal processing [2-4]. In particular, in 
literature [4], Chen claimed that neighbor 
multi-wavelet denoising could be used in place of 
wavelet denoising. And this evokes our great interest 
and furthermore leads to the investigation into the 
method.  

Based on the work of literature [4], we extend 
neighbor multi-wavelet denoising, investigating the 
neighborhood as suggested by Chen. Besides, we 
study the exponent used in the method. The objective 
of our work is to search for the relatively optimal 
parameters by massive simulation. Further, we apply 
the method, together with derived optimal parameters, 
to detect partial discharge overwhelmed by excessive 
noise and evaluate its performance. 
 
 
2 Basic theory of multi-wavelet 
For a multi-resolution of multiplicity 1>r , there are 
r  scaling functions )(1 tφ , )(2 tφ ,…, )(trφ , and r  
scaling functions )(1 tψ , )(2 tψ ,…, )(trψ , usually 
written as vectors T

r ttt )](),...,([)( 1 φφ=Φ  and 
T

r ttt )](),...,([)( 1 ψψ=Ψ  respectively, which 
satisfy the following matrix equations[5-7] 
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where, k kh g、  are r r×  matrix low-pass filter and 
high-pass filter, respectively. 

Similarly, from the MRA of multi-wavelet, 
decomposition and reconstruction equation can be 
derived as follows [8]: 
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1, , 22 ,   ,j k m j m k
m

j k− += ∈∑D g D Z        (4) 

, 1, 2 1, 22 ( )j m k j m k k j m k
k

∗ ∗
− + − += +∑C h C g D    (5) 

where T
, 1, , 2, , , ,[ , ,..., ]j k j k j k r j kc c c=C , 

T
, 1, , 2, , , ,[ , ,..., ]j k j k j k r j kd d d=D , whereas ∗ denotes the 

complex conjugate transpose. In our work, the 
multi-wavelet adopted is the most commonly used 
GHM（Geronimo-Hardin-Massopust）multi-wavelet 
developed by Geronimo et al[5]. 

The decomposition and reconstruction process 
of multi-wavelet transform are illustrated in Fig.1, in 
which Q and P denote prefilter and post-filter 
respectively, for more details of prefilter and 
post-filter, the reader is referred to literatures [8-10]. 
The prefilter and post-filter, together with the matrix 
filter coefficients, used in our study can be found in 
the appendix. 
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(b)reconstruction 

Fig.1  Decomposition and reconstruction of 
multiwavelet transform 

 
 

3 Neighbor multi-wavelet denoising 
Neighbor multi-wavelet denoising scheme considers 
several adjacent coefficients as a block, and 
thresholds them as a whole. As the relation between 
coefficients has been taken into consideration, better 
performance can be obtained. Applying 
multi-wavelet transform with an appropriate prefilter, 
we get r stream coefficients in the form 
of , , ,j k j k j k

∗= +D D E , where *
,j kD  are the signal 

coefficients, and Ej,k have multivariate normal 
distribution N(0,Vj). The matrix jV  is the covariance 
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matrix for the error term that depends on the 
resolution level j. In the absence of any signal 
component, the quantity ,j kθ = T 1

, ,j k j j k
−D V D  will have a 

2
nχ  distribution. The threshold rule used for 

processing coefficients is based on the values of ,j kθ . 
And jV  can be obtained directly by using robust 
covariance estimation suggested in[3]. 

The idea of neighbor thresholding lies in the fact 
that: if the current coefficient contains some signal, 
then it is likely that the closely adjacent coefficients 
also do. For this reason, define a variable ,j kS , if only 
two immediate neighbor coefficients are considered, 

, , 1 , , 1
r r r

j k j k j k j kS θ θ θ− += + + , the thresholding algorithm 
of literature [4] can be represented as 

,
ˆ

j k =D , ,( , )r
j k j kf S µ⋅D , where ( )f ⋅  denotes 

threshold rule and rµ  is the corresponding threshold 
(r is an nonnegative integer). 

We extend the neighbor thresholding  by 
representing the coefficient block as  

, ,( , )
k q

r
j k j i

i k q
S q r θ

+

= −
= ∑                              (6) 

where q  denotes the neighborhood, an nonnegative 
integer (q=1 corresponds to the case in [4]); r  is a 
positive exponent; with regard to the marginal 
problem encountered in calculating ,j kS , we process 
it by periodic extension. 

Similar to classical multi-wavelet thresholding, 
neighbor thresholding can be implemented in two 
ways, either in hard thresholding or in soft 
thresholding. Soft thresholding can be expressed as  
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and hard thresholding corresponds to 
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⎪
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where 2lgj jNµ = , jN  is the length of the 

multi-wavelet coefficients at resolution level j ; r
jµ  

is the threshold for resolution level j ; ,
ˆ

j kD  is the 
estimate of coefficient corresponding to signal. In the 
successive section, only hard threshold is considered.  
 
 
4 Analysis of simulation signals 

Partial discharge detected on site usually turn out to 
be resonant damped pulses. In theory research, it can 
be simulated with the following analytical expression 
[11] 

/
m( ) e sin( 2 )t

cf t V f tτ−= × π          (9) 

where mV  denotes the peak value; τ  time constant; 

cf  resonant frequency. In simulation, let mV =1mV, 
τ =0.1µs, 0.5µs, 1µs, 2µs, 3µs or 4µs, cf =1MHz. 
White noise superimposed has a 2(0,0.25 )N  
distribution. With these parameters, we can obtain 
original partial discharge pulses and corrupted data, 
which are illustrated in Fig.2 and Fig.3 respectively. 
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Fig.2 Simulation signal of partial discharge 
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Fig.3 Simulation signal of partial discharge mixed 
with white noise 

 
In signal processing, Root Mean Square Error 

(MSE) is an important criterion for evaluating the 
denoising performance [3], and in our work, it is 
adopted. 

Based on (6) and partial discharge shown in Fig.2, 
by massive simulation, which was conducted 300 
times independently,  we get the relation between 
MSE and parameters r、q(see table 1 and Fig.4). 
Fig.4 shows that, with the increase of r, MSE 
decreases all the while, and at last approximates some 
constant (see table 1); with the increase of q, MSE 
increases consistently. As for term-by-term 
denoising, the mean of 300 results is 
MSE=0.0047mV. Compare 0.0047 with the results in 
table 1, it can be seen that, with appropriate 
parameters r、q, neighbor denoising can give better 
results. 

Table 1  Relation among MSE、q and r 

MSE/µV  r =1 r=1.5 r=2 r=2.5 r=3 r=3.5 r=4
q=0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 
q=1 6.1 4.7 4.2 4.2 4.2 4.2 4.2 
q=2 14.0 5.5 4.9 4.7 4.4 4.4 4.4 
q=3 29.3 7.8 5.7 5.3 4.7 4.7 4.7 
q=4 45.4 10.7 6.6 5.8 5.1 5.1 5.1 
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q=5 56.2 14.9 8.0 6.5 5.6 5.5 5.5 
 
From Fig.4 and table 1, it can be concluded that, 

when q keeps  constant (q=1 is preferred), if r>3, the 
change of MSE is trivial, but the computing 
complexity becomes intensive. Therefore, the 
selection of q�1, r ∈ [2,3] may achieve good 
performance. This coincides with the results reported 
in literature [4], where q=1, r=2. In the successive 
calculation, only r=2.5 is considered.   

With the optimal parameters r=2.5 and q=1, we 
give an instance of denoising the data shown in Fig.3 
(see Fig.5). For convenience of comparison, results 
by using term-by-term denoising are provided 
together (see Fig.6). 
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Fig.4 RMSE vs.  r and q 
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Fig.5 Denoised signals with neighbor multi-wavelet 
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Fig.6 Denoised signals with term-by-term 
multi-wavelet 

 
From Fig.5, Fig.6 and Fig.2, it can be seen that 

both neighbor multi-wavelet denoising and 
term-by-term multi-wavelet denoising can suppress 
the white noise efficiently. MSE of two methods are 
0.0040mV, 0.0046mV respectively. It suggests that 
with appropriate parameters r and q, neighbor 
thresholding  is superior to term-by-term 
thresholding. 

 
 

5 Processing of on-site data 
On-site data is derived from an online PD monitoring 
system installed on some power generator, and the 
sampling frequency of the system is 6.67MHz, while 
the length of the data is 262144 points. Ahead of 

denoising, FIR filtering is employed to the sample, 
and both methods are implemented. The ultimate 
result of processing is illustrated in Fig.8 and Fig.9. 

From Fig.8 with Fig.9, it can be seen that, both 
methods can be used to suppress the white noise, 
extracting partial discharge pulses. Due to the 
original partial discharge is unknown; it is impossible 
to calculate out the performance of either method. 
For the sake of comparison, we apply the classical 
wavelet based method also (wavelet base function is 
db8 suggested in [12], and the denoising results is 
shown in Fig.10). For computing MSE, we choose 
the mean of three results as the reference original 
partial discharge. With the reference data, the final 
MSE of neighboring coefficient based method and 
classical method are calculated out, 1.0784mV and 
1.2119mV respectively. The former outperforms the 
latter, and this coincides with the result obtained 
previously. 
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Fig.7 Partial discharge signals from power plant 
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Fig.8 Denoised signals by multiwavelet 
with neighbouring coefficient 
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Fig.9 Denoised signals with multiwavelet ( 
term-by-term)  
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Fig.10 Denoised signals with wavelet(db8)  
 
 

6 Conclusion 
In this contribution, we extend the work of Chen, and 
furthermore apply it to denoise partial discharge 
signals. By massive simulation, together with on-site 
data processing, we conclude that: 

(1) With proper  q and r, neighbor multi-wavelet 
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denoising outperforms  term-by-term  multi-wavelet 
denoising. And this confirms the result reported by 
Chen.  

(2) With the increase of q, MSE increases 
accordingly, while with the increase of r, MSE 
decreases, at last approximating some constant. 

(3) With q=1 and r ∈ [2,3], neighbor 
multi-wavelet denoising can give nearly optimal 
results. 
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Appendix: 
The matrix filter coefficients, prefilter and post-filter 
used in the paper are defined below 
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