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Abstract: -Discrete spectrum interference (DSI) is one of the main interferences in online partial discharge 
monitoring system, usually comes from communication system, high frequency relay protection system, 
broadcast, etc. The energy of DSI is so high that, in most cases, partial discharge signals are overwhelmed. 
Without eliminating the DSI properly, we can hardly analyzing the partial discharge accurately. Among the 
existing tools, adaptive filter receives much more attention than others, due to its ability of suppressing DSI 
without needing the prior knowledge of the interference frequency. In this contribution, we employ it to 
eliminate the DSI in partial discharge detection. For DSI with single main frequency, adaptive filter does work. 
However, when the number of main frequency increases from one to more, the performance of the filter 
degrades. In some case, it even diverges, without output. For solving this problem, we incorporate Empirical 
Mode Decomposition (EMD) with the common adaptive filter, and propose a new scheme for suppressing DSI. 
By EMD, the DSI with multi-frequency are adaptively decomposed into different Intrinsic Mode Functions 
(IMF), with different frequency component into different IMF. In this way, the problem of suppressing 
multi-frequency DSI is reduced to the problem of suppressing single-frequency DSI, and accordingly, the 
problem can be solved with ease.  
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1 Introduction 
Detection of partial discharge plays an important role 
in the insulation monitoring of large power plant. In 
the past decades, much work has been done in this 
field. When power apparatus is operating, there exist 
excessive interferences, and in most cases, partial 
discharges are overwhelmed by them. For analyzing 
the partial discharge properly, interferences must be 
eliminated[1]. Among various interference sources, 
discrete spectrum inference (DSI), resulting from 
communication system, high frequency relay 

protection system,etc, affects PD greatly, and ought 
to be suppressed in the first place. 

For suppressing DSI, many methods have been 
developed, such as FFT based filter, adaptive filter, 
wavelet transform, etc. Among them, FFT filter and 
wavelet transform both suppress the DSI by 
eliminating the corresponding frequency component 
in frequency domain. Unfortunately, such methods 
need prior knowledge of interference main 
frequency, while in practice the main frequency is 
unknown. Compared with other methods, adaptive 
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filter does not need information of main frequency, 
and receives much more attention[2]. However, it is 
well known that, there exist some problems in the 
algorithm of adaptive filter. As far as the most 
common used Least Mean Square (LMS) algorithm 
is concerned, there exists compromise between 
convergence speed, step and convergence accuracy. 
Improper parameters may lead to great error; even 
the filter becomes unstable. For single main 
frequency interference, it is easy to set the optimal 
parameters, but for DSI with multi-frequency, the 
situation becomes much complex. For solving this 
problem, we propose a new scheme, by 
incorporating a new signal processing tool, 
Empirical Mode Decomposition, namely, EMD. 

EMD is a method, developed recently by 
NASA, mainly for analyzing nonstationary 
signals[3]. EMD can adaptively decompose the 
signal into a number of Intrinsic Mode Functions 
(IMFs) with different frequency bands. Utilizing this 
splitting characteristic, in this contribution, we 
incorporate EMD with common adaptive filter. By 
using EMD, we reduce the problem of 
multi-frequency DSI to the one of single-frequency 
DSI, and together with adaptive filter, 
single-frequency DSI can be further eliminated with 
ease. This is the idea of our work, and the objective of 
our work is to validate the scheme.  
 
 
2 Empirical mode decomposition 
2.1 Basic theory of EMD 
EMD, alias Huang transform, assumes that any 
complex signal is composed of local AM-FM 
components. In this sense, a number of basic 
functions can be extracted from the complex signal, 
and these basic functions are referred to as intrinsic 
mode functions (IMF). An IMF must meet two 
prerequisites[3]:①the number of zero-crossings  and 
extrema differs no more than 1② the mean of it 
approximates 0 according to some criterion. 

EMD does not admit analytical representation. 
And given a signal )(tx , its IMFs can be extracted by 
the following iterative process: 
1) Identify all the extrema of )(tx  
2) Get upper envelop )(tu  and lower envelop )(tv  

of )(tx , by interpolating between maximum and 
minimum with cubic splines function; 

3) Compute the mean of the upper and low envelop  
2))()(()( tvtutm +=    （1） 

4) Extract detail )(td  from 
)()()( tmtxtd −=    （2） 

If it meets the two prerequisites of IMF, then )(td  is 
an IMF of )(tx ; otherwise, regard )(td  as the 
original signal, return to step 1). Repeat the above 
procedure, until )(td  meets the prerequisites of IMF. 

From above procedure, the final )(td  is the first 
IMF, written as )(1 tc , and then, compute 

)()()( 11 tctxtr −= , )(1 tr  is the residual with regard 
to the first IMF )(1 tc . 

Regarding )(1 tr  as a new signal to decompose, 
iterate the above step 1～4, and we can get the second 
IMF )(2 tc  and corresponding residual )(2 tr  of )(tx , 

)()()( 212 tctrtr −=    （3） 
Following the above procedure, iterate on the 

residual, and we can get all the IMF )(tc j ( ,...2,1=j ) 
of )(tx . Eventually, a signal )(tx  comprising J  
IMFs, by EMD, can be represented as 

)()()(
1

trtctx J

J

j
j +=∑

=

  （4） 

where, )(trJ  is the last residual, a flat function. 
 

2.2 Frequency-splitting characteristics of 
EMD 
From the previous introduction, it can be seen that, 
the frequency-splitting principle of EMD is the same 
as wavelet transform. Both decompose the signal into 
two components, high frequency part and low 
frequency part, then, iterate on the latter, until all the 
information of different frequency band are 
extracted. Although the principle is similar, the 
frequency-splitting characteristics differ. 

Wavelet transform is pre-determined frequency 
band decomposition, in other words, each frequency 
band is pre-determined, every resolution level is a 
band-pass filtering; EMD is different, EMD 
decomposes the data adaptively, the first IMF is 
high-pass filtering, residual is low-pass filtering, and 
others are all band-pass filtering[4]. Furthermore, the 
entire frequency band is unknown, depending on the  
physical construction of the signal. 
 
 
3 EMD based adaptive filter 
Among various algorithms available for adaptive 
filter, Least Mean Square (LMS) algorithm is in 
common use.The structure of a LMS based traverse 
adaptive filter is illustrated in Fig.1. In the diagram, 
input signal x  is DSI  superimposed to PD, and r  is 
the reference DSI. In practical processing, r  is 
obtained by delaying x  for some interval. The output 
e  is the expected PD signal. 
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Fig.1 The diagram of  adaptive filter 

 
In the adaptive filter with LMS algorithm, the 

weight coefficient matrix is  
( ) ( ) ( ) ( )nVnenWnW µ+=+1   （5） 

where ( )nW  denotes the weight coefficient, ( )nV   
the input signal, ( )ne  the output, and µ  the 
convergence factor. The value of µ  is crucial to 
adaptive filter; it affects the convergence speed, 
stability and the accuracy of the final output. Usually, 

PN ⋅
<<

10 µ , where N  and P  indicate the length 

and mean power density of the signal, 
respectively[5]. 

When eliminating DSI with single main 
frequency, it is simple for adaptive filter to set 
optimal parameters. However, it is not the case when 
faced with multi-frequency DSI, which has multiple 
main frequencies, usually scattering widely in 
spectrum, from tens of kHz to thousands of kHz (e.g., 
the frequency of carrier wave in communication 
system is 40 kHz ~ 500kHz, that of broadcast is tens 
of kHz～ thousands of kHz). It is difficult to select 
proper parameters in this case. What is more, the 
stability of the filter degrades, and in the worst case, 
the output of the filter diverges. For solving this 
problem, we employ EMD to preprocess the data, 
decomposing the signal into a number of IMFs, at the 
same time, DSI of multi-frequency is decomposed 
and several new single-frequency DSIs are obtained. 
Fortunately, DSI with different frequency are 
decomposed into different IMF. Therefore, by 
filtering all the IMFs, the DSI in the original data are 
filtered. The idea of  EMD based filter is illustrated in 
Fig.2. 

 
Fig.2 The scheme of EMD based adaptive filter 

 
 

4 Processing of simulation signals and 
on-site data 
For evaluating the performance of the EMD based 
filter, the results processed by common adaptive 
filter are provided as well. 

 
4.1 processing simulation data 
In practical engineering, the PD pulses detected on 
site usually show to be damped pulses or oscillatory 
damped pulses. In theory research, they can be 
simulated by either of the following modes[6]: 

 
τ/

11 )( teAtf −=       (6) 
 )()( /2.2/3.1

32
ττ tt eeAtf −− −=      (7) 

 )2sin()( /
23 tfeAtf c

t πτ ×= −
      (8) 

         
( ) ( )

( )tf
eeAtf

c

tt

π

ττ

2sin

2.23.1
44

××
−= −−

       (9) 

where A  indicates the amplitude coefficient, 
whereas τ   and cf  are time constant and resonant 
frequency, respectively. In simulation, the 
parameters are set as follows: peak value of each 
pulse is 1mV, τ  =1us, cf  =1MHz, and sampling 
frequency is equal to 10MHz. With these values, we 
can obtain PD pulses as shown in Fig.3. The DSI 
superimposed can be formulated as 

))22sin(
)21sin()2500sin(

)2250sin()2125(sin(

tM
tMtk

tktkAf

××
+××+××

+××+××=

π
ππ

ππ
（10

） 
where A  denotes the amplitude of DSI. The DSI has 
five main frequencies: 125kHz, 250kHz, 500kHz, 
1MHz and 2MHz. In simulation, set A =0.5mV. 
After adding the DSI, the PD pulses are almost 
overwhelmed completely (see Fig.4). 

 
Fig.3 Simulation pulses of partial discharge 

 
Fig.4 DSI superimposed to the simulation PD pulses 
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For the simulation pulses displayed in Fig.4, we 
firstly decompose it with EMD. The decomposition 
results are illustrated in Fig.5. Five DSIs with 
different main frequency are successively separated 
out, accordingly related to 1~5 IMF, respectively. 
Together with Hilbert-Huang spectrum (about HHT, 
the reader is referred to literature[3]), the result can 
be even clearer. From Fig.5, we can observe that, the 
results obtained by EMD are similar to those by using 
wavelet transform. In essence, EMD and wavelet 
transform are both used for splitting signals on some 
spectral basis. The difference between them is that 
EMD splits adaptively, the frequency band of each 
IMF is determined by the physical components 
constructing the signal, while wavelet transform does 
it based on a pre-determined frequency band, 
precluding the possibility of adapting to local 
variation of the oscillations. 

 
Fig.5 IMFs of the simulation signal 

 
Fig.6 HH spectrum of the simulation signal 

 
In accordance with the flowchart in Fig.2, the 

IMFs in Fig.5 are filtered respectively and 
adaptively. Now, the inputs of adaptive filter are no 
more DSI with multiple main frequencies, but 
multiple DSIs with single main frequency. By 
reconstructing the filtered IMFs, PD data free of DSI 

can be obtained, see Fig.7. 
The result derived from common adaptive filter 

is shown in Fig.8. Comparing Fig.8 with Fig.7, we 
can readily observe that, EMD based filter is superior 
to common adaptive filter. When the result of 
common adaptive filter is not convergent, this 
advantage is in particular significant. 

 
Fig.7 Result derived form EMD based filter 

 
Fig.8 Result derived from common adaptive filter 

 
4.2 processing on-site data 
The practical data was derived from an online PD 
monitoring system installed on a power plant (see 
Fig.9). Sampling frequency of the system is 
6.67MHz. The DSI in sampling data is not obvious, 
and for the sake of clarity, we add strong DSI in the 
form of (10), with A =20mV. From Fig.10, it can be 
readily observed that many PD pulses are 
overwhelmed by the strong DSI. 

Comparing Fig.11 with Fig.12, we can conclude 
that EMD based filter outperforms common adaptive 
filter in extracting PD pulses from strong DSI 
interference. 

 
Fig.9 Partial discharge data detected on-site 

 
Fig.10 DSI superimposed to on-site PD data 
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Fig.11 Result derived from EMD based filter 

 
Fig.12 Result derived from common adaptive filter 

 
 

5 Conclusion 
EMD is a newly developed tool for analyzing 
nonstationary signals, and it can decompose the 
signal according to its components physically and 
adaptively. In this contribution, we incorporate it 
with adaptive filter, expecting to solve the problem of 
multi-frequency DSI suppression. 

Processing of simulation and on-site data 
demonstrates that, EMD together with adaptive filter 
can reduce the multi-frequency DSI to multiple 
single-frequency DSIs, and better performance can 
be achieved compared with common adaptive filter. 
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