
Resolution based computer metamorphic virus detection using
redundancy control strategy

RUO ANDO, NGUYEN ANH QUYNH, YOSHIYASU TAKEFUJI

Graduate School of Media and Governance, Keio University,
5322 Endo Fujisawa, Kanagawa, 252 Japan

1-1538-11 Iriya Zama, Kanagawa, Japan 228-0024
 http://www.neuro.sfc.keio.ac.jp

Abstract: - In this paper we propose a resolution based detection method for detecting metamorphic computer
virus. Our method is the application of formal verification using theorem proving, which deduce parts of viral code
from the large number of obfuscated operations and re-assemble those in order to reveal the signature of virus.
While previously many kinds of the symbolic emulation based methods have been applied for metamorphic virus,
no resolution strategy based method is proposed. It is showed that the complexity of metamorphic virus can be
solved if the obfuscated viral code is canonicalized and simplified using resolution based state pruning and
generation. To make our detection method more feasible and effective, redundancy-control strategies are applied
for the resolution process. In this paper the strategies of demodulation and subsumption are applied for eliminating
the redundant path of resolution. Experiment shows that without these strategies, resolving metamorphic code into
several simplified operations is almost impossible, at least is not feasible in reasonable computing time. The
statistics of reasoning process in detecting obfuscated API call is also presented. We divide obfuscated API call
into four modules according to the types of metamorphic techniques and compare the conventional resolution with
our method applying redundancy-control strategy.

Key-Words: - Metamorphic virus, Resolution based detection, Theorem proving, First-order logic, Redundancy
control strategy, Obfuscated API call

1 Introduction
The number of security incidents is still constantly
increasing, which imposes a great burden on both the
server administrators and client users. Among these
incidents, despite the short history, computer viruses
have become a very important issue. Although it has
been about one decade since computer viruses became
expected occurrence, viruses, worms and Trojan
damages personals, companies government. Recent
viruses and worms are divided into two types.
One is to exploit the vulnerability of the latest and
major software such as Nimda, MSBlaster and SQL
Slammer.These worms recently are a valid example
showing we suffer the great damege if we keep using
the computer unpatched. Another evolution of virus
writing is proceeded on the intention of challenging
AV(anti virus) products. Thwarting virus scanning
technique is first appeared in 1990's, called
polymorphic computer virus. In 2002, Win32.Simile
have a great impact on AV software company with
sophisticated viral code hiding techniques such as
EPO (entry point obfuscation).This kind of malicious
code is called metamorphic virus about which
Symantec Corporation published the paper in 2001[1].

Fig. 1 Three kinds of viruses

Figure1 shows the comparison of three kinds of

viruses. In basic virus, part of the entry point code is
changed to derive program control to infected code.
Detection is relatively easy if static signature matching
can find viral code. Polymorphic virus applies
encryption for its body to evade signature matching[2].
Still nowadays, no complete solution is proposed to
detect polymorphic virus. However, there also exists
heuristic method that survives and has been improved

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp265-270)

from DOS 16bit days for Polymorphic coding attack.
Metamorphic virus reprogram itself with little pieces
of viral code scattered. At the same time, the space
between viral codes is filled withjunk code. This kind
of virus shows different body in every infection
although the generations are all functionally
equivalent. Besides, what makes it more difficult to
detect metamorphic virus than polymorphic is that the
infection of entry point is hidden. This obfuscating
technique is called entry point obfuscation. In
polymorphic virus, entry point code is changed to lead
the program control to the viral code regardless of
situation of infecting file, which is not the case of
metamorphic virus. After the evaluation since 16bit
DOS days, AV scanner can improve the detection rate
of polymorphic virus by finding the infected entry
point. Signature based scanning is almost nullified for
the metamorphic virus. Although as countermeasure
for metamorphic virus the code emulation techniques
are applied in AV products, tracing the value of
registers or variables is not feasible enough to find this
type of viral code. In this paper we introduce the
resolution based symbolic emulation method for
metamorphic virus detection. The effectiveness of
resolution based detection for metamorphic virus is
discussed.

2 Resolution based virus detection
Resolution based virus detection is one of applications
of formal verification using theorem proving. To
resolve the obfuscated code into simplified one, we
need the adequate representation of disassembly code
and state pruning and generation. In this section we
discuss the methodology for resolution based
detection.

2.1 Representation of disassembly code
Modern computer has Von Neumann architecture
where the instruction is processed in sequential form.
For every execution of instruction, the state of
program loaded to memory is changing, which is
expressed by the value of register, variables and
address in memory. We formulate assembly code as
follows:

-instruction_name(data_type(x),data_type(y),address,
time(z))|
state(data_type(x),data_type(y),address,time(z)

Figure2 shows the FoL (First-order Logic)
formulation of API GetModuleHandleA. Obfuscation
and simplification of this operation is discussed in
section 4. In generic assembly language such as GaS
of X86, the instructions consists of opcode and
operand. The first two arguments, data_type(x) and
data_type(y) express opcode and operand. Address is
the number of execution. The term Time(z) expresses
how many this instruction is executed.

original code formulated code

mov dword_1,A state(VAR(dword_1),
const(A),v,Tim(1))

mov dword_2,B state(VAR(dword_2),
const(B),w,Tim(1))

mov dword_3,0 state(VAR(dword_3),
const(0),x,Tim(1))

push offset dword_3 state_push(var(dword_3),
y,Tim(1))

call ds:
GetModuleHandleA

state(call
(GetModuleHandle),
z,Tim(1))

Fig. 2 FoL formulation of disassembly code

2.2 State resolution and demodulation
In general, verification of the software is the process
of explosion of the states of program. If the target
program is infected, there has be a state transition to
achieve some operations as part of malicious behavior
such as calling API. To resolve these instructions from
obfuscated code, resolution system need to store all
state generated by the execution of every instructions.

Fig. 3 State pruning and resolution

Figure 3 shows proposal method of the resolution
based detection of obfuscated metamorphic code. Our
method consists of two types of reasoning, resolution

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp265-270)

and demodulation. First, several instructions are
deduced to one simplified instruction by applying
hyper resolution. We apply the transition axioms to
combine several states and generate new state
for this resolution which means state pruning is
executed at the same time. Transition axioms and state
pruning is discussed in next section. Second, junk
code such as NOP and xor(X,X) is crossed by a
technique called demodulation. Demodulation is one
of equality substitution methods to purge the
information in a sense semantically redundant.
Demodulation is discussed in next section. In the
process of detection, we add the formulation of
disassembly code of viral code besides the code under
inspection. Reasoning program attempts to deduce the
same as "signature clauses" from obfuscated
metamorphic code. The reasoning program is
terminated when the equivalence is found between
two clauses (codes). In automated reasoning, this
termination is called unit conflict. The automated
reasoning event called unit conflict is generated when
we get unit clauses with opposite in sign.

Definition: Unit conflict
The unit confict is a event where two clauses contains
a single literal of which signs are opposite and can be
unified. These two clauses are called contradictory
unit clauses.

In proposal method, detection is succeeded if unit
conflict is occurred between deduced clauses and
signature clauses. We prefabricate assembly code
formulation that calls some API and add it to the list in
the opposite (negative) sign. Then, reasoning program
is proceeded, in order to occur the unit conflict by
resolving the same clauses of original viral code.
3 ATP strategy
FoL resolution presented in this paper is one of the
techniques of ATP (automated theorem proving).In
this section we discuss ATP strategies to make
resolution faster. These strategies are designed to
reduce the redundancy by the retained information.

3.1 Set of support
Set of support was introduced by L.Wos, S.Robinson
and Carson in 1965[9]. [If the clause T is retrieved
from S, SOS is possible with the satisfiability of S-T.
Set of support strategy enable the researcher to select
one clause characterizing the searching to be placed in
the initializing list called set of support. For the

searching to be feasible and more effective, the
resolution of more than one clauses not in SOS is
inhibited in order to prevent the prover go into
abundant searching place.

Fig. 4 Set of support strategy

Figure4 show the resolution process in set of
support strategy, where S=\{P and Q and R, ~P and R,
~Q and R, ~R\}.The restriction imposes the reasoning
so that the program do not apply an inference rule
to a set of clauses that are not the complement of set of
support. The further discussion of this restriction
strategy can be referred in [8].

3.2 Redundancy control strategy
Redundancy-control strategy is basically designed to
reduce the obstacle for reasoning program within the
retained information. In this paper we apply two
strategies, subsumption and demodulation.

3.2.1 Subsumption
Subsumption is the process of discarding a specific
statement. The clause that duplicated or is less general
is discarded in the already-existing information. As a
result, subsumption prevents a reasoning program
from retaining clauses that is obviously redundant,
especially is logically captured by more general
clauses. For example,

OLDER(father(x),x)
Subsumes
OLDER(father(Ann),Ann).

Definition. The clause A subsumes the clause B when
B is the instance that is logically captured by B.
The clause
P(X)

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp265-270)

Subsumes the clause
P(a).

There is a variation of subsumption called back
subsumption in the newly generated clauses that is
more general. In this paper we apply only forward
subsumption. As we discuss in section 2, to deduce
state(var(dword_2),var(dword_1),x,time(y))
from the clauses

-state(reg(edx),var(dword_1),x,time(y))|
-state(var(dword_2),reg(edx),x,time(y)).

There are several paths and aximos that could be
applied. Subsumption strategy is effective when the
same or more specific clause in the present of
already-existing clause is generated. The clause is
crossed and the generated clauses on the process of
resolution is also eliminated. The effectiveness of this
strategy is presented in experimental results.

3.2.1 Demodulation
In the automated reasoning, one of the procedures of
simplify or canonicalize information is called
demodulation[8]. A unit equality applying for
rewriting or rephrasing expressions to canonical form
is called demodulator. A demodulator is a positive unit
clause with an equality predicate to simplify the
information. Demodulation is the effective way to
eliminate garbage instructions.

EQUAL(nop,crossed).
EQUAL(mov(reg(eax),reg(eax)),crossed).

These demodulators eliminate the junk insertion.
In proposal method, for every insructions, the state
clause is generated. Among those generated clauses,
the state generated by junk instruction is demodulated
to the state "crossed", which is not translated to
another state any more.Demodulation is also applied
for the prevention of the nested substitution.

const(const(x))=const(x).
const(var(x))=var(x).

These demodulators block the resolution program
from endless substitution of constant(x) and
var(x). Demodulation can be applied for the junk code
insertion when the target clause is identified as dead
code in one line.
4 Experimental results

In this section we discuss the experimental results of
detecting metamorphic virus applying proposal
method. The effectiveness of redundancy-restriction
strategy in simplifying the metamorphically
obfuscated code is presented. To pick up the sample,
we construct the model of typically metamorphic
virus. Figure5 shows the basic structure of
metamorphic virus such as W32.evol, W32.simile, and
W32.Zmist.
Infected code is scattered and spread over its body.
Infection of entry point code which direct program
control to viral code is obfuscated and hidden. The
scattered viral codes are reordered by inserting branch
instructions such as JMP and JE. Besides, in some
cases, redundant loop is inserted to change its
signature for every infection. From the view point of
implementation, the techniques applied for
metamorphic virus is divided into three types, register
substitution, magic number permutation and
reordering instructions. The experiment is divided
according to these techniques.

To test the effectiveness of our method, we used
open source software called OTTER (Organized
Techniques for Theorem-proving and Effective
Research) to simplify the obfuscated viral code. Otter
is a forth-generation of Argonne National Laboratory
deduction system to prove theorems stated in FoL with
Knuth-Bendix completion, weighting and strategies
for directing and restricting searches.

Fig. 5 Basic structure of metamorphic virus

Table 1 and 2 shows the result of identifying

hiding technique called register substitution.Register
substitution is the technique exploiting the
exchangability of some registers in IA-32 architecture.
Usually, most of operations consists of malicious
behavior is not completed in one instructions.We can
select arbitrary register to some operation of
substitution. This technique generates different

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp265-270)

implementations for the same operation such as insert
value A into address B.

original code 2 clauses
obfuscated code 14 clauses

 no
strategy

proposal
method

clauses given 59 45
clauses generated 93 60
Hyper_res
generated 93 60

demod & eval
rewrites 29 19

clauses forward
subsumed 0 16

subsumed by SOS 0 5
clauses kept 92 43

Table. 1 Register substitution I

original code 2 clauses
obfuscated code 8 clauses

 no
strategy

proposal
method

clauses given * 25
clauses generated * 24
hyper_res generated * 24
demod & eval
rewrites * 8

clauses forward
subsumed * 6

subsumed by SOS * 1
clauses kept * 17

Table. 2 Register substitution II

Table 1 is result of simplifying the instruction No
2,3 in Figure 2. In experiment, this instruction is
obfuscated by inserting 12 redundant instructions.
Table 2 is result of simplifying the instruction No 4,5
in Figure 2. In experiment, this operation is obfuscated
by inserting 6 redundant instructions. It is validated
that this type of obfuscation cannot be simplified with
feasible computing time without redundancy control
strategy.

In developing software, a constant number
programmer sometimes remember is called "magic
number". For example, in Win32. the base address of
KERNEL32.DLL is fixed as magic number. Magic
number permutation even changes constant DWORD

values by adding redundant arithmetic operation. By
using this technique, magic DWORD values are
changed in subsequent generations of the virus. No
wildcard based string matching is effective for this
obfuscation method Table 3 shows the result of
simplifying the instruction No 1 in Figure 2. In
experiment, this code is obfuscated by inserting 4
redundant instructions.

Table 4 show the result of identifying the simple
redundant loop.Metamorphic virus, the W95/Zperm
family appeared in June and September 2000. These
viruses inserts jump instructions into its code and add
redundant loop module. In experiment, the loop
consists of three instructions. To identify this loop, 43
clauses is generated. However, by using
redundant-control strategy, the number of generated
clauses is reduced to 24.

original code 1 clauses
obfuscated code 5 clauses

 no
strategy

proposal
method

clauses given * 19
clauses generated * 25
hyper_res generated * 25
demod & eval
rewrites * 12

clauses forward
subsumed * 9

subsumed by SOS * 2
clauses kept * 15

Table. 3 Magic number permutation

original code 0 clauses
obfuscated code 3 clauses

 no
strategy

proposal
method

clauses given 24 14
clauses generated 43 24
hyper_res generated 43 24
demod & eval
rewrites 18 9

clauses forward
subsumed 0 2

subsumed by SOS 0 2
clauses kept 43 22

Table. 4 Junk code and loop insertion

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp265-270)

Table 5 shows the result of resolving all modules
above into simplified API call operation as shown in
Figure3.2. Calling GetModuleHandleA is obfuscated
by the techniques of register substitution, magic
number permutation and junk code and loop insertion.
In experiment, these codes is obfuscated by inserting
21 redundant instructions. It is validated that
obfuscating API call cannot be revealed in reasonable
computing time without redundancy-control strategy.

original code 5 clauses
obfuscated code 26 clauses

 no
strategy

proposal
method

clauses given * 203
clauses generated * 293
hyper_res
generated * 293

demod & eval
rewrites * 143

clauses forward
subsumed * 112

subsumed by SOS * 25
clauses kept * 180

Table. 5 Compilation: obfuscating API call
GetModuleHandleA

5 Conclusion and further work
In this paper we present the resolution based technique
for detecting metamorphic computer virus. In proposal
method, scattered and obfuscated viral code is
resolved and simplified to several parts of malicious
code. Compared with emulation based method, this
formal verification based method is effective for
metamorphic virus which applies anti-heuristic
techniques such as register substitution or permuting
magic number. Our method is one of misuse
detections, so it takes advantages in the probability
rate of false positive. To make resolution program
detect metamorphic virus faster and more feasible,
we apply some redundancy-restriction control such as
demodulation and subsumption. Demodulation is a
equality substitution technique enabling a program to
simplify and canonicalize statements by using rewrite
rules called demodulator. This strategy is effective to
remove garbage and junk code for obfuscating viral
code. In experiment, these two kinds of strategies are
coordinated to simplify the obfuscated API call
operation. Metamorphic viral code is divided into four

modules according to the technique of register
substitution, magic number permutation and junk loop
insertion. Experiment show that two modules cannot
be simplified to detect without redundancy-control
strategy. Although the other two modules can be
verified as a part of viral code, it is showed that the
proposal method using redundancy-control strategy is
effective to make the reasoning program faster. It is
also validated that without these strategies resolution
program cannot reveal obfuscated API call in
reasonable computing time.

References:
[1]Peter Szor and Peter Ferrie.Hunting for
Metamorphic. Virus Bulletin Conference,September
123-144,2001.
[2]Stephen Pearce, "Viral Polymorphism", paper
submitted for GSEC version 1.4b,2003.
[3]Diomidis Spinellis. :Reliable identification of
bounded-length viruses is NP-complete. IEEE
Transactions on Information Theory,January
280-284,2000.
[4] Static Analysis of Executables to Detect Malicious
Patterns (2003) Mihai Christodorescu and Somesh
Jha12th USENIX Security Symposium, August 2003
[5]Hao Chen, Drew Dean, and David Wagner.Model
checking one million lines of C code.
In Proceedings of the 11th Annual Network and
Distributed System Security Symposium (NDSS),
pages 171--185, San Diego, CA, February 2004.
[6]O.Sheyner, J.Haines, S.Jha, R.Lippmann, and J. M.
Wing, "Automated Generation and Analysis
of Attack Graphs", IEEE Symposium on Security and
Privacy , April 2002.
[7]Arun Lakhotia, Eric Uday Kumar: Abstracting
Stack to Detect Obfuscated Calls in Binaries. SCAM
17-26,2004
[8]Larry Wos, George A. Robinson, Daniel F. Carson,
Leon Shalla: The Concept of Demodulation in
Theorem Proving. J. ACM 14(4),698-709,1967
[9]Larry Wos, George A. Robinson, Daniel F. Carson:
Efficiency and Completeness of the Set of Support
Strategy in Theorem Proving. J. ACM 12(4),
536-541,1965
[10]William McCune: OTTER 3.3 Reference Manual
CoRR cs.SC/0310056,2003
[11] Dimitris A. Karras, Vasilis Zorkadis,
"Neural Network Techniques for Improved Intrusion
Detection in Communication Systems"
WSEAS CSCC,pp318-323,2001

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp265-270)

