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Abstract: A Genetic Programming based Polynomial Networks Model (GPPNM) is presented in this paper to 
promote the diagnostic performance of incipient insulation fault of power transformers. Other than 
conventional hierarchical architecture to build polynomial networks, the proposed GPPNM constructs it using 
tree-like structure of Genetic Programming (GP). By means of flexible selection of low-order polynomial 
functions and feature variables in each node of structure, the polynomial networks is evolving in the global 
search space by generations to capture the complex and numerical knowledge relationships between dissolved 
gases and fault types. The proposed model has been applied on the actual fault records and compared with 
conventional method, artificial neural networks method and self-organizing polynomial networks (SOPN) 
method. The numeric test testifies that the GPPNM requires less prior knowledge in the process of construction 
of diagnosis model and has better performance than other methods. 
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1 Introduction 
Oil-immerged power transformers are the most 
pivotal devices in the power delivery system. The 
insulation condition of these devices has a great 
influence on the stability of power system. 
Therefore, it is essential to develop fault diagnosis 
system that can identify insulation fault types inside 
the power transformers to provide reliable 
maintenance information before they deteriorate to a 
severe state.  

In the techniques of insulation diagnosis, 
dissolved gas analysis (DGA) based methods have 
been proved most effective to distinguish insulation 
fault types by means of concentration of special 
dissolved gases of power transformers. When some 
kind of insulation fault occurs, insulation oil 
decomposes into a series of characteristic gases 
under the condition of electrical and thermal stress. 
Conventional DGA methods, such as the key gases 
analysis, the Donrnenburg method, Rogers’ gas ratio 
method and IEC/IEEE standard criteria, are 
developed based on experience of experts and 
statistic results to interpret the relationship between 
dissolved gases and insulation fault types [1-4].   

Fuzzy theory based diagnosis systems are 
developed to improve the vagueness of boundary 

among criteria [5]. However, it is difficult to 
conclude more fuzzy rules in the case of 
multidimensional input when better performance is 
required. Artificial neural networks (ANNs) based 
methods are also introduced to diagnose the fault 
types of power transformers [6-7]. But, the choosing 
of neuron type and networks structure is mainly on 
the prior knowledge of authors and trial-and-test. In 
the meanwhile, the convergence of network 
parameters learning algorithm also have a great 
influence on the performance of   ANNs.  As 
another method of nonlinear system modeling, 
Group Method of Data Handling (GMDH) 
algorithm was introduced by Ivakhnenko in the 
early 1970’s to model complex nonlinear system 
[8]. The main characteristic of GMDH is that it is a 
self-organizing and provides an automated selection 
of essential input feature variables without prior 
information on the relationship among input-output 
variables. Self-organizing Polynomial networks 
(SOPN) is a useful GMDH-type algorithm which 
has a hierarchical architecture [9]. The output of the 
each node of layers in SOPN structure is obtained 
using several types of high-order polynomial such 
as linear, quadratic and modified quadratic of input 
variables. These polynomials are called partial 
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descriptions (PDs). Although the SOPN is 
structured by a systematic design procedure, it has 
some drawbacks to be solved. The selection 
principle and numbers of good PDs in each layer are 
still chosen in advance and discarded PDs in former 
layers can not be reused by later layers. Moreover, 
the SOPN algorithm is a heuristic method so it does 
not guarantee that the obtained SOPN is the best one 
for nonlinear system modeling. Then further study is 
necessary to promote the performance of SOPN 
based fault diagnosis of power transformers [10]. 

Recently, Genetic Programming (GP) algorithm 
has received considerable attention in the structure 
optimization domain and obtained many successful 
applications in the area of discovering nonlinear 
relationship of input-output system [11]. In this 
paper we present a new diagnosis system for 
insulation fault of power transformer using Genetic 
Programming based Polynomial Networks Model 
(GPPNM) in order to alleviate the above-mentioned 
drawbacks of the SOPN and promote the diagnosis 
performance.  

This paper is organized as follows. An overview 
of GP algorithm is described in Section 2. The 
design methodology of GPPNM and flowchart of 
GPPNM based diagnosis system are described in 
Section 3. A hierarchical classification strategy for 
insulation fault types is shown in Section 4. 
Numeric test results of the proposed GPPNM-based 
diagnosis system are presented in Section 5. Finally, 
Section 6 draws the conclusion.  
 
 
2 Overview Of GP 
Prof. John Koza introduced the concept of GP in his 
creative research work. GP extends the chromosome 
of Genetic Algorithm (GA) into a combination of 
special programs to construct alternative solution to 
the problem. The individual in the population of GP 
is represented in the form of tree-like nodes or 
programs. Two kinds of nodes- function and 
terminal nodes- are used in the structure. The 
function nodes act as a program to fulfill a special 
task. Arithmetic operators, mathematical functions, 
boolean operators, conditional operators are usually 
selected in the function sets of GP. User-defined 
functions and automatic define functions also can be 
used in GP to solve special task. The terminal nodes 
stand for the basis unit of problem. Special 
constants, random numbers and input attributes are 
usually used in the terminal sets. The choice of 
function sets and terminal sets vary on the problem 
to be solved. 

The population of GP evolves using the 
Darwinian principle of survival of the fittest. GP 

begins with a population of randomly created 
programs using some kinds of tree-grown 
algorithms. They are possible solutions to a given 
problem. In every generation, the fitness of each 
individual is evaluated. For the next generation, the 
survive possibility of individual is based on its 
fitness. The population evolves over a number of 
generations through the operation of various 
operators, such as reproduction, crossover and 
mutation. The dynamic tree-like structure of 
individual ensures the global search capability of 
GP to find proper structure and parameters of 
solution. The final result of GP (the best solution 
found) is the fittest solution produced along all 
generations when stopping rule is satisfied. 
 
 
3 Genetic Programming Based 
Polynomial Networks Model 
(GPPNM) 
Other than the hierarchical architecture of 
conventional polynomial networks, the GPPNM 
utilize tree-like structure of GP to construct the 
networks. Then evolutionary search strategy is 
adopted to learn the best structure which describes 
the nonlinear relationship of between system input 
and system output.  
 
3.1 Representation of individual 
A high-order polynomial can be constructed by a set 
of low-order polynomials and variables. In the 
function set of GPPNM, we take 16 different 
second-order polynomial functions that take two 
arguments [12]. Using the tree-like structure, it is 
very easy to create various high order polynomials. 
Table 1 lists all these second-order polynomial 
functions. The terminal set contains feature 
variables of system.  

Table 1: The function set of GPPNM 
1. f1(x)=a0+a1x1+a2x2+a3x1x2 
2. f2(x)=a0+a1x1+a2x2 
3. f3(x)=a0+a1x1+a2x2+a3x1

2+a4x2
2 

4. f4(x)=a0+a1x1+a2x1x2+a3x1
2 

5. f5(x)=a0+a1x1+a2x2
2 

6. f6(x)=a0+a1x1+a2x2+a3x1
2 

7. f7(x)=a0+a1x1+a2x2
2+a3x2

2 
8. f8(x)=a0+a1x1

2+a2x2
2 

9. f9(x)=a0+a1x1+a2x2+a3x1x2+a4x1
2+a5x2

2 
10. f10(x)=a0+a1x1+a2x2+a3x1x2+a4x1

2 
11. f11(x)=a0+a1x1+a2x1x2+a3x1

2+a4x2
2 

12. f12(x)=a0+a1x1x2+a2x1
2+a3x2

2 
13. f13(x)=a0+a1x1+a2x1x2+a3x2

2 
14. f14(x)=a0+a1x1+a2x1x2 
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15. f15(x)=a0+a1x1x2 
16. f16(x)=a0+a1x1x2+a2x1

2 
Fig.1 shows the representation of individual in 

the population of GPPNM. For each function node 
in the tree, its coefficients are estimated by a rapid 
recurrent least squares (RLS) method to avoid the 
need to search for their values [13]. Its output is 
calculated according to the two arguments and 
mathematic function. Then it becomes one of the 
arguments of upper node. This process continues to 
the root node to generate final output FGP. 

 
Fig. 1 Tree-like individual in the GPPNM 

  
3.2 Fitness calculation 
Predicted squared error (PSE) criterion is used in the 
GPPNM to evaluate each individual as  

2*(2 / )*PSE FSE C K n σ= +                             (1) 
Where FSE is the fitting squared error on the 
training data, C is a complexity penalty multiplier 
selected by the user, K is the number of model 
coefficients, n is the number of samples in the 
training set, and σ2 is a prior estimation for the 
variance of the error obtained with the unknown 
model [9]. As the model becomes more complex 
relative to the size of the training set, the second 
term increases linearly while the first term decreases. 
PSE goes through a minimum at the optimum model 
size that strikes a balance between accuracy and 
simplicity. The user may optionally control this 
trade-off using the C parameter. Larger values than 
the default value of 1 lead to simpler models that are 
less accurate but may generalize well with 
previously unseen data, while lower values produce 
more complex networks that may overfit the 
training data and degrade actual performance.  
 
3.3 Genetic operators 
The reproduction, crossover and mutation operators 
are used to generate new individual of population. 
The reproduction operator directly keeps the 
individual to next generation without any change. 
The crossover operator exchanges parts of two 
individuals in the randomly selected crossover 
nodes while the new individual with small size is 
selected. The mutation operator varies the selection 

node with a new function node, terminal node or 
small size tree. All of the three operators are applied 
with predefined probabilities.   
 
3.4 GPPNM-based Diagnosis System 
Fig.2 displays the flowchart of GPPNM. The 
proposed GPPNM-based diagnosis system is 
constructed as follows. 

 
Fig. 2 Flowchart of GPPNM construction 

 
3.4.1 Step 1 (DGA data collection)  
Collect the historical insulation fault records with 
characteristic gases concentration, fault types and 
the recommendatory maintenance advices. 
 
3.4.2 Step 2 (Initialization of GPPNM)  
This step includes the selection of function set, 
terminal set, tree-generation algorithm, initialization 
of population, probabilities of reproduction, cross-
over and mutation and so on.  
 
3.4.3 Step 3 (Genetic operation)  
Individuals in the old generation undergo genetic 
operations to generate new ones according to 
predefined probabilities.  
 
3.4.4 Step 4 (Fitness calculation)  
In this step, the coefficient of each function node is 
first estimated by RLS method. Then fitness of 
individual is calculated by Equation 1. 
 
3.4.5 Step 5 (Selection process) 
The better the fitness of individual is, the more 
chance it survives in the new generation by a 
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tournament selection strategy. The new individual 
will replaced the one with poor fitness in the process 
of evolution.   
 
3.4.6 Step 6 (Checking the stop condition)  
While the best individual’s fitness value satisfies 
stop criteria or max generation is arrived, the 
evolution process then stops and the best individual 
is output as solution to the diagnosis system; 
otherwise repeats step 3-6.  
 
 
4 Hierarchical Classification Strategy 
For Insulation Fault Types 
There are 4 insulation fault types in our diagnosis 
database. Due to the complicated structure and 
operation condition of power transformers, the 
reasons that cause insulation failures are complex. 
In order to decrease misclassification and provide 
diagnosis information step by step, a hierarchical 
classification strategy with four main fault types is 
proposed in Figure 2 where L.E.D., H.E.D., L.M.O., 
H.O. represent low energy discharge, high energy 
discharge, low or mediate temperature overheating, 
and high temperature overheating, respectively. The 
GPPNM1 firstly classifies the energy discharge 
faults and thermal faults. Then GPPNM2 classify 
the L.E.D. and H.E.D. while GPPNM3 the L.M.O. 
and H.O. 

 
Fig. 2 A hierarchical classification strategy for 

insulation fault types 
 
 
5 Numeric Test 
The proposed GPPNM-based diagnosis system has 
been applied to DGA data in our database. Table 2 
lists the composition of training set and verifying 
set. We use two kinds of feature variables of DGA 
data in our diagnosis system. Case 1 selects the 
three extensively used gas ratio C2H2/C2H4, CH4/H2, 
and C2H4/C2H6 [4]. Case 2 uses the relative 
percentage of above five gases’ concentrations.  

Table 3 lists the parameters adopted in the 
GPPNM. They are generally selected to keep the 
model from complexity and save computational 
time.  

 
 

Table 2: Composition of the training set and 
verifying set 

Energy discharge Thermal fault Fault case L.E.D. H.E.D. L.M.O. H.O. 
Training 

set  34 60 42 90 
Verifying 

set 23 41 28 60 
Table 3: Parameters in the GPPNM 

Parameters Value 
Population size 100 

Max nodes 40 
Max generation 100 

Function set List in Tab. 1 
Terminal set Case 1, case 2 

Probability of reproduction 0.1 
Probability of crossover 0.7 
Probability of mutation 0.2 

Tournament size 7 
complexity penalty multiplier 1 

Table 4 compares the performance of GPPNM 
with other existing methods on the DGA data. The 
results show that the proposed GPPNM has a better 
average performance than the other methods in both 
cases. It also shows that the more the feature 
variables are, the better the performance is. The 
shortage of ANNs and SOPN methods is that 
structures of these models should be determined in 
advance while it mainly relies on prior knowledge 
of authors [6, 10]. Our GPPNM possess of global 
search ability to automatically find the better 
structure which ensures better performance.  

Table 4: Performance of different methods 
Case Methods Total accuracy (%) 

GPPNM 88.2 
SOPN 87.9 
ANNs 87.6 Case 1

IEC 68.2 
GPPNM 92.2 
SOPN 89.4 
ANNs 89.1 Case 2

IEC 68.2 
 
 
6 Conclusion 
This paper proposes a GPPNM-based diagnosis 
system to detect the insulation fault types of power 
transformers. The highly nonlinear relationship of 
DGA data and fault types is described by a tree-like 
polynomial networks with a set of second-order 
polynomials. The advantage of proposed method is 
that its ability to evolve accurate and predictive 
polynomial models. The application on insulation 
fault diagnosis has proved its validity. 
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