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Abstract: - The paper describes a new procedure for solving a long-term transmission expansion planning problem in 
a market environment. The main feature analyzed is the evaluation of transmission system flexibility indexes, that 
define the attitude to use branches residual power capability when new power injections, in a defined nodes set, occur. 
The procedure, based on the use of Genetic Algorithms (GA), has been tested on some simple networks; in the paper 
some preliminary test results are presented.  
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1 Introduction 
In a market environment the transmission planning 
problem is affected by a significant degree of 
uncertainty. The liberalization of electric energy 
markets brought along significant changes of bulk 
electric power systems, in particular the unbundling of 
the vertically integrated utilities into new independent 
generation and transmission network companies. As a 
consequence the electrical transmission planners 
experience a much larger degree of uncertainty about 
siting, sizing and commissioning of new power plants. 
Given the uncertainties about generation expansion 
and operation, it becomes necessary to identify new 
parameters for the optimal solutions characterization 
with reference to structural (branches admittances, 
distribution factors, etc.) and operational issues (total 
transfer capability, power flows, residual power 
capability, etc.) [1-8]. In this framework many authors 
have taken as suggestion the “system flexibility” 
defined as the attitude to adapt the transmission system 
development, quickly and with limited costs, to every 
change, from the initial planning conditions. 
In this context, with a particular regard to changes in 
generation, an heuristic Uncertainty Scenario 
Flexibility Index (USFI), taken into account both 
structural and operational parameters, has been defined 
by the authors [9]; in particular the distribution factors 
and the residual transmission power capability on the 
different network branches, defined as “power 
margin”, have been chosen. Its validation has been 
made with application to simple test networks and to 
an actual network [10]. The encouraging results 
involved in the formulation of a new methodology for 
transmission system flexibility computation, through 
the definition of indexes and criteria that include both 
technical and economical information [11]. These 
indexes, called Technical USFI (T-USFI) and 
Technical Economical USFI (TE-USFI), are calculated 
for the whole system (system indexes) and for some 

network areas (area indexes). The procedure for their 
calculation includes two optimization problems solved 
with GA, implemented in MatLab 7 workspace [12].  
In fact, in general, the introduction of new parameters 
for a more careful evaluation of alternative 
transmission expansion plans involves the need for 
methods that are able to synthesise optimal 
transmission expansion plans: as in a vertically 
integrated scenario the transmission planning problem 
is based on optimization problems that can be solved 
by the use of traditional methods, in a competitive 
environment the transmission planning problem is an 
hard, large-scale combinatorial problem and the 
number of options to be analysed increases 
exponentially with network size. The practice has 
shown that conventional optimization procedures 
became unable to produce optimal solutions for larger 
networks. As an alternative to conventional 
optimization methods, different heuristic search 
algorithms, rooted in natural and physical processes, 
have been investigated: for example, simulated 
annealing (SA), genetic algorithms (GA) and 
evolutionary programming (EP) [13-21]. It is generally 
recognized that GA approach is an efficient tool to 
solve transmission planning optimization problems 
[22-25]. It is based on the natural selection principles: 
the optimization procedure follows an evolutionary 
strategy to find the best solution of a search problem. 
Thus, starting from an initial population of individuals, 
each one representing a possible solution, the 
evolution takes place and changes the population in 
order to form the next generation until a convergence 
criterion is fulfilled. So the solution is given by the 
best individual. GA generates a sequence of 
populations (generations) by using three basic 
mechanisms: selection, crossover and mutation. The 
three operators are applied to the current population to 
determine the next generation, which has a high 
probability to be made of better individuals.  
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Besides, for algorithm success, it is necessary to 
choice:  
(i) the control parameters values;  
(ii) the exact roles of crossover and mutation;  
(iii) the search landscapes amenable to optimization; 
(iv) convergence properties. 
In the paper all these issues are fully addressed: some 
small example systems, for which optimal are known, 
have been used to tune the main parameters of the 
genetic algorithm. 
Obviously the ability to solve large-scale practical 
problems has to be verified: GA method has to be 
applied to a larger example system for which no 
optimal solutions are known. This work is in progress. 
So in the paper section 2 reports the mathematical 
model of the optimization problems for the flexibility 
indexes calculation, section 3 describes the 
formulation proposed for the genetic algorithm, and in 
section 4 a test case is shown. 
 
 
2 Optimization Problem: Mathematical 
Model 
 2.1 List of Symbols 
In the paper the following symbols with the specified 
meanings are used: 
 NGnew, NGold: number of the nodes which are 

possible sites of new plants, and with already 
active sites, 

 NG= NGnew+ NGold: number of the nodes with 
generation, 

 NL: number of branches, 
 Pc: system load, 
 Pk : injection at node k, 
 ∆Pk : additional injection at node k, 
 Pij : power flow on the ij branch, 
 Mij : power margin of the ij branch capability, 
 Iij: current on the ij branch, 
 Rij: resistance of the ij branch, 
 CINFij k: distribution factors of the node k with 

respect to the ij branch, 
 Pij

losses : power loss on the ij branch,  
 CINFkk

k: distribution factors of the node k with 
respect to a nodes subset, 

 ∆Pk
MIN, ∆Pk

MAX: minimal and maximum additional 
injection at node k in NGnew set, 

 Pk
MIN, Pk

MAX: minimal and maximum injection at 
node k in NGold set, 

 Pmax
ij: limit carrying capability of the ij branch,  

 Ck(Pk) : generation cost at node k in NGold set. 
 
2.2 Technical and Technical Economical 
Uncertainty Scenario Flexibility Indexes 
In order to characterize the network scenarios, system 
indexes (T,TE-USFIS) and area indexes (T,TE-USFIA) 

have been chosen. The network scenarios are referred 
to a predefined temporal horizon, for which the load is 
already known. 
The system flexibility indexes are defined as: 

T,TE-USFIS = ΣNGnew ∆Pk
T,TE          (1) 

As a consequence of the already mentioned 
importance of both operational and structural 
parameters, two different area flexibility indexes, with 
reference to the single node, have been computed: the 
one as function of operational parameters (power 
margins on branches) and the other as function of 
structural parameters (distribution factors of the 
branch with respect to nodes). In particular they are 
expressed as: 

T,TE-USFIA
I(k)=αk·∆Pk

T,TE         (2) 

T,TE–USFIA
 II (k) = ∆Pk

T,TE - ∆Pk
 T,TE * (3) 

with: 
αk =fαk(CINFkk

k,ΣNLkMij
T,TE)      (4) 

∆Pk
 T,TE *=f∆Pk (CINFij

k)   (5) 
In particular αk is a node coefficient related to CINFkk

k, 
distribution factors of the node k with respect to the 
nodes subset for which power injections involve an 
unloading of the network, and to ΣNLkMij

T,TE, total 
variation of the power margins on branches flowing 
into the k node that decrease due to injections ∆Pk; 
∆Pk

T,TE *is a reduction factor related to CINFij
k that are 

distribution factors of the node k with respect to all the 
branches directly flowing into the node k. 
For the calculation of USFI it is necessary to evaluate 
∆Pk

T, ∆Pk
TE which are the results of two minimization 

programs, whose input are suitable data computed by a 
previous Montecarlo simulation. 
 
2.3 T-USFI Calculation: Minimization 
Algorithm 
The problem involves in transmission system nodes 
injections computing, only minimizing the power 
margins on the transmission system, disregarding any 
consideration of generation cost.  
The control variables of the problem are the injections 
at generation nodes (∆Pk

T), both the already active 
sites and the possible sites of new plants built in 
connection with the deregulated electrical market, that 
are separated in two different clusters. 
The constraints involve plants generation limits and 
therefore their corresponding injections at the 
generation nodes, limits of flowing power on the 
branches, local and total power balance between the 
overall generation and the constant loads, bulk system 
equations. 
The minimization problem can be written as: 

fobj = ΣNL Mij
T = ΣNL ( Pmax

ij  -⏐Pij
T ⏐) (6) 

where: 
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[Pij
T]= [CINFij k]*[Pk

T]   (7) 
Pk

T=Pk+∆Pk
T  (8) 

So the fobj becomes: 
fobj = Σij

NL ( Pmax
ij  -⏐Σk

NN CINFij k*Pk⏐) = 
= Σij

NL ( Pmax
ij -⏐Σk

NN CINFij k*(Pk+∆Pk
T)⏐) (9) 

About constraints: 
- 0 ≤ ∆Pk

MIN ≤ ∆Pk ≤ ∆Pk
MAX ,    k=1 NGnew     (10) 

- ∆Pk≤0 and Pk
MIN <Pk< Pk

MAX  ,   k=1, NGold   (11) 
- |Pij| < Pmax

ij ,     ij=1,NL       (12) 
- Σk

 ∆Pk = 0,     k =1, NG             (13) 
The superscripts T are used for the results of the GA, 
because they are employed for the T-USFI calculation; 
their absence refers to initial values. 
 
2.4 TE-USFI Calculation: Minimization 
Algorithm 
The problem involves in transmission system nodes 
injections computing, minimizing the power margins 
on the transmission system, the additional generation 
cost per unit and the additional losses cost per unit. 
The control variables of the problem are the new 
injections constrained by costs at the nodes (∆Pk

TE), 
both the already active sites and the possible sites of 
new plants built in connection with the deregulated 
electrical market, that are separated in two different 
clusters. 
The constraints involve plants generation limits and 
therefore their corresponding injections at the 
generation nodes, limits of flowing power on the 
branches, local and total power balance between the 
overall generation and the constant loads, bulk system 
equations. 
The minimization problem can be written as: 

fobj1 =  ΣNL Mij
T = ΣNL ( Pmax

ij  -⏐Pij
T ⏐)   (14) 

fobj2 = ∆C’GEN = ΣNGold Ck’(Pk)TE–ΣNGold Ck’(Pk) (15) 
fobj3=∆C’LOSSES= 

=ΣNL[ΣNGoldCk’(Pk)][(Pij
lossesTE–Pij

losses)/Pij
losses]  (16) 

where: 
[Pij

TE]= [CINFij k]*[Pk
TE]        (17) 

Pk
TE=Pk+∆Pk

TE   (18) 
Ck’(Pk) = Ck(Pk) / Pc        (19) 

Pij 
losses= Rij Iij

2   (20) 
About constraints: 
- 0 ≤ ∆Pk

MIN ≤ ∆Pk ≤ ∆Pk
MAX , k=1 NGnew,     (21) 

- ∆Pk≤0 and Pk
MIN <Pk< Pk

MAX  , k=1, NGold     (22) 
- |Pij| < Pmax

ij  , ij=1,NL       (23) 
- Σk

 ∆Pk = 0 k=1, NG        (24) 

The superscripts TE are used for the results of GA, 
because they are employed for the TE-USFI 
calculation; their absence refers to initial values.  
 
 

3 Optimization Problem: Model for GA 
3.1 Coding 
The GA objective is to quantify the additional power 
injections set that minimizes the total margin, with and 
without cost constraints, for an assigned nodes set 
where the additional injections could be located. For 
this reason the chosen coding is real vector. Each 
individual is represented by a vector of real numbers 
(double precision) whose length is equal to the number 
of control variables, that is the number of (present and 
future) generation nodes. 
 

3.2 Fitness Function: Objective and Penalty 
Functions 
3.2.1 T-USFI Calculation: Fitness Function 
The fitness function for the minimization problem 
contains: a term (total network power margin) which is 
the objective function (fobj

T) with the control variables 
(∆Pk

T); six penalty functions pfi which subtract value 
to fitness penalizing the solutions that don’t respect the 
constraints.  
In particular the fitness is a linear combination of fobj 
and pfi with coefficient that are opportunely chosen 
through heuristic tests: 

fitnessT =[fobj
T(∆Pk

T)] + Σi=1,6 αi·pfi (25) 

where pf1 is related to limits of flowing power on the 
branches, pf2 and pf3 to generation limits for nodes 
located in already active sites and in new sites, pf4 to 
total power balance between the overall generation and 
constant loads, pf5 and pf6 to the difference in sign of 
injections between present and future plants. 
 
3.2.2 TE-USFI Calculation: Fitness Function 
The fitness function for the minimization problem 
contains: a term (total network power margin) which is 
the first objective function (fobj1

TE) with the control 
variables (∆Pk

TE); a term (additional generation cost 
per unit) which is the second objective function 
(fobj2

TE) with the control variables (∆Pk
TE); a term 

(additional losses cost per unit) which is the third 
objective function (fobj3

TE) with the control variables 
(∆Pk

TE); six penalty functions pfi which subtract value 
to fitness penalizing the solutions that don’t respect the 
constraints equal to pfi used in the first minimization 
problem. In particular the fitness is a linear 
combination of fobji and pfi with coefficient that are 
opportunely chosen through heuristic tests: 

fitnessTE =[γ1 fobj1
TE

 (∆Pk
TE)+γ2 (∆C’GEN) fobj2

TE
 (∆Pk

TE)+ 

+ γ3 (∆C’LOSSES) fobj3
TE

 (∆Pk
TE)] + Σi=1,6 αi·pfi   (26) 
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It is worth pointing out that the coefficients γ2 and γ3 
are respectively variable as function of ∆C’GEN and 
∆C’LOSSES, because the objective functions fobj2 and fobj3 
have to weight differently according to values of 
additional generation and losses cost (per unit).  
Through this formulation the GA find an initial 
solution of the minimization problem that in the space 
of the solutions constitutes an alternative of good 
quality that, thanks to the values given to the weights 
γ1, γ2 and γ3, satisfies the objective of the minimization 
of the power margins on the transmission system (as a 
master function), but it may not be able to satisfy the 
needs on the other two objective functions that can be 
considered as slave functions. 
 
3.2.3 Explaining about Fitness  
In GA approach, the fitness (f) represents the quality 
of a configuration (the value associated to an 
individual of a population). Higher-quality 
configurations have better chances to generate 
offsprings. Conventional GA are formulated as 
maximization problems. So in a minimisation 
problem, the fitness function cannot coincide with the 
objective function itself but the problem must be 
transformed into equivalent maximization problem. 
The transformation here implemented and tested is the 
following: 

min f = max (f0-f)    (27) 

where f0 is the value of fitness for the initial 
configuration, that is without ∆Pk. 
It is well known that during the initial stages allowing 
the violation of some constraints, that means allowing 
the survival of some configurations with pfi different 
to 0, is very important because it makes easier for the 
GA to move through the search space. On the contrary 
towards the end of the optimization process, the value 
of pfi should be high enough to discourage any type of 
solution out of constraints.  For this reason the fitness 
scaling technique has been adopted, which also allows 
a better control of the convergence characteristics. The 
scaling function converts raw fitness scores returned 
by the fitness function to values in a range that is 
suitable for the selection function. In particular the 
Scaling function technique chosen is the fitness 
ranking that scales the raw scores based on the rank of 
each individual, rather than its score. The rank of an 
individual is its position in the sorted scores. Rank 
fitness scaling removes the effect of the spread of the 
raw scores.  
 
3.3 GA setting 
 
The genetic operators used are selection, crossover, 
mutation and elitism. 
The selection function chooses parents for the next 
generation based on their scaled values from the 

fitness scaling function. As selection function has been 
adopted the stochastic uniform that lays out a line in 
which each parent corresponds to a section of the line 
of length proportional to its expectation. The algorithm 
moves along the line in steps of equal size, one step 
for each parent. At each step, the algorithm allocates a 
parent from the section it lands on. The first step is a 
uniform random number less than the step size. 
Crossover combines two individuals, or parents, to 
form a new individual, or child, for the next 
generation. The crossover function selected is 
scattered type. It creates a random binary vector and 
then selects the genes where the vector is a 1 from the 
first parent, and the genes where the vector is a 0 from 
the second parent, and combines the genes to form the 
child. 
Mutation functions make small random changes in the 
individuals in the population, which provide genetic 
diversity and allows the GA search capability to be 
increased. The mutation function selected is Gaussian 
type: it adds a random number to each vector entry of 
an individual. This random number is taken from a 
Gaussian distribution centred on zero. The variance of 
this distribution can be controlled with two 
parameters: the scale and the shrink parameter. 
The elitism keeps the best individual of the previous 
generation in the next one, in order not to loose the 
best information contained in the previous population. 
The number of individuals that are guaranteed to 
survive to the next generation has to be set. 
The control parameters are: the Population Size that 
specifies how many individuals there are in each 
generation; the Elite Count that specifies the number 
of individuals that are guaranteed to survive to the next 
generation; the Crossover Fraction that specifies the 
fraction of the next generation, other than elite 
individuals, that are produced by crossover; the 
Mutation Factors that are the scale parameter for the 
variance at the first generation and the shrink 
parameter for the control how variance shrinks as 
generations go by; the Elite Count that specifies the 
number of individuals that are guaranteed to survive to 
the next generation Typical values for these control 
parameters are reported in the literature, but there is no 
agreement on the optimal way of tuning such 
parameters, and a particular choice of parameter values 
is highly dependent on the application. Moreover, 
these parameters are closely related and the value 
chosen for one of them may affect the optimal values 
of the others. In this research, parameter values have 
been determined in a number of tests with smaller 
networks, and this information will be used for 
extrapolating parameters values for larger networks. 
The values set is the following: population size equal 
to 40; for the mutation the scale parameter equal to 1, 
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the shrink parameter equal to 1; crossover rate equal to 
0.8; elite count equal to 2. 
Finally a controlled random generation for the initial 
population has been chosen; in particular a random 
initial population with a uniform distribution has been 
created. 
About stopping criteria, that determine what causes the 
algorithm to terminate, many possible convergence 
criteria have been tested on both algorithms. In 
particular the process can stop when: 
1. the genetic algorithm performs a maximum 

number of iterations equal to 600 (Generation 
limit); 

2. the maximum time for which the genetic algorithm 
runs arrives to 6000 seconds (Time limit); 

3. the best fitness value is less than or equal to 100 
(Fitness limit);  

4. there is no improvement in the best fitness value 
for the 100 generations (Stall generations limit); 

5. there is no improvement in the best fitness value 
for an time interval of 600 seconds (Stall time 
limit).  

It has been verified that the first convergence criterion 
stops the search. Really by the analysis of fitness trend 
it can be noted that in many cases the convergence is 
obtained at 300-th iteration. 
 
 

4 Test and Results 
4.1 Test Network Description 
In order to tune the main parameters of the genetic 
algorithm (control parameters values, roles of 
crossover and mutation, and convergence properties) 
firstly some smaller example systems, for which 
optimal are known have been used [9-11]. As example 
the results obtained for a small test network, shown in 
figure 1, are reported.  

 
Fig.1 - Test Network 

The network has three possible future power plants in 
three generation nodes (N1, N3, N5), three present 
power plants in other three generation nodes (N7, N8, 
N9) and three load nodes (N2, N4, N6). The branches 
number is even 12. For sake of simplicity, loads have 

been considered spatially uniform and even 150 MW 
for node. 
In order to implement and to test the GA procedure, 
the deterministic input used is referred to the result of 
a LFCC for peak load simulation. The initial power set 
is reported in figure 1. Obviously, since the three 
present power plants are directly connected with the 
loads, in the initial conditions only these connection 
branches are loaded. 

4.2 Results 
Two GA gives in output the injections set that allows 
of minimum total power margins with and without 
cost constraints, respectively used for T,TE-USFI 
computation. 
The obtained results are shown in figure 2. 
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Fig. 2 - GA Output: Injections Set for T,TE-USFI 

Calculation 
For these injections set, T-USFIS is equal to 140 MW, 
TE-USFIS is equal to 119 MW. 
It is worth to point out that the two injections sets are 
very different, so for the single nodes T-USFIA and 
TE-USFIA are different. Their difference can be used 
as a suggestion about the weight that additional 
generation and losses cost have on local flexibility. 
The programs gives also the total power margins and 
all the pfi trends. As example figure 3 reports total 
power margin trend in output for two GA: 
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Fig. 3 -  Total  Power Margin Trend 

It is worth to notify that the GA for TE-USFI gives a 
smaller reduction of total power margin because of the 
presence of costs constraints. 
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5 Conclusion 
 
The paper describes a new procedure, based on 
Genetic Algorithms (GA), for the resolution of a long-
term transmission expansion planning problem in a 
market environment, and in particular for the 
evaluation of the system and network areas flexibility. 
Its application on some simple test networks allows of 
tuning the main parameters of the GA. The results 
analysis shows a good accuracy of the procedure. 
Work is in progress about its application to real 
network and about the GA formulation for the 
technical-economical indexes evaluation, in order to 
make automatic the setting of the weights and to 
obtain the absolute optimum in the space of the 
solutions. 
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