
Adaptive device with underlying mechanism
defined by a programming language

APARECIDO VALDEMIR DE FREITAS 1,2 , JOÃO JOSÉ NETO 1
1 Escola Politécnica da Universidade de São Paulo

Depto. de Engenharia de Computação e Sistemas Digitais
Av. Prof. Luciano Gualberto, trav. 3, No 158. Cidade Universitária

São Paulo – Brasil
2 Universidade Municipal de São Caetano do Sul

Instituto Municipal de Ensino Superior de São Caetano do Sul
Av. Goiás No 3400 – Vila Barcelona – São Caetano do Sul – CEP 09550-051

São Paulo – Brasil

Abstract: - An adaptive device is made up of an underlying mechanism, for instance, an automaton, a grammar,
a decision tree, etc., to which is added an adaptive mechanism, responsible for allowing a dynamic
modification in the structure of the underlying mechanism. This article aims to investigate if a programming
language can be used as an underlying mechanism of an adaptive device, resulting in an adaptive language.

Key-Words: - adaptive devices, self-modifying machines, adaptive automaton, functional adaptive
programming language, algorithms and computation theory.

1 Introduction
Adaptive devices were first studied and applied in
the field of compiler implementation in order to get
purely syntactic mechanisms intended to enlarge
pushdown automata’s expressions capacity [6]. The
theory of adaptive devices started with simple-to-
use formalisms, such as finite state automata,
which enabled them - by adding a set of rules – to
represent more complex problems, as those
concerning non-regular languages and even
context-depedent [11].
Adaptive technology involves techniques and
methods associated with the practical applications
of adaptive devices. Chronologically, these devices
originated from researches into formal languages
and automata. Formalism, however, stimulated
applications in several different fields [7].
An adaptive device is made up of an underlying
mechanism (eg an automaton, a grammar, a
decision tree, etc.), to which what we call adaptive
mechanism is conjoined, allowing the structure of
the underlying mechanism to be dynamically
modified. If, for instance, an adaptive mechanism is
added to a finite state automaton, it is possible to
increment or remove transitions and/or states
during the input stream process [8] and to increase
its expression power.
Adaptive technology, therefore, is basically
characterized by re-using consolidated formalisms

and increasing their expression power at the cost of
a small increment in formal complexity [11].
An adaptive device should always be associated
with a fixed and finite set of rules, which account
for the reconfiguration of the device, occasionally
considering an input stimulus and generating some
exit symbol.
When guided by rules, a device starts operation in a
given configuration and proceeds with the
application of some rule from its set up to when
there are no more input stimuli or when a
configuration is reached to which application of
rule is not possible. At this point, it is possible to
determine, based on the configuration reached,
whether the device accepts the complete sequence
of input stimuli or rejects it.
In an adaptive device, a set of rules can be
modified by another one, called adaptive actions,
working on the original set of rules. An adaptive
device, then, is made up of an underlying layer – a
non-adaptive device guided by rules – and an
adaptive layer defined by a set of adaptive actions.
Starting from adaptive automata and following the
evolution of adaptive devices, new adaptive
devices were conceived and associated with several
areas, with different underlying mechanisms, such
as statecharts[12], Markov nets [13],
computational learning [18], natural languages
processing [14], grammars [15], multilanguage
environments [16], robotics [17], decision trees
[11], etc.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp423-428)

2 Objective

This paper intends to investigate and assure that
programming language can be used as an
underlying mechanism of an adaptive device. Just
like an adaptive finite automaton incorporates a
finite automaton as an underlying mechanism, an
adaptive programming language must use some
programming language as an underlying
mechanism. We are going to investigate, then, if
the implementation of adaptive language is
feasible, therefore applicable to problems
recommending adaptive technology.
The adaptive mechanism found in the adaptive
language will make it play a self-modifying role,
performed by dynamic codes. Self-modifying codes
employed in machine languages are often hard to
write and to keep. Our proposal, however, dodges
the difficulties common in machine languages
because the adaptive technology considers the use
of adaptive functions, specified by fixed well-
defined rules, which secure reliability to the
proposed solution.
Another objective is to show the technical viability
of designing programming languages that modify
themselves to tackle the problem to solve. A
program is often divided into parts, in a top-down
methodology. With adaptive languages, the
division can be made by the bottom-up approach,
the language modifying itself towards the problem
[3].
To reach this objective a functional programming
language will be used, with extensible features for
the incorporation of the mechanisms of adaptive
formalism [9]. The choice of functional paradigm
doesn’t restrict the conception of adaptive
languages exclusively to this paradigm. As soon as
the feasibility of the adaptive languages is assured,
further research in other programming paradigms
can be undertaken.

3 Adaptive Devices

An adaptive automaton is the result of a sequence
of evolution of a structured pushdown automaton
processed by adaptive actions. To each adaptive
action a new automaton is implemented for the
continuity of the input stream treatment.
To illustrate the applicability of adaptive devices,
there follows a practical example quite useful for
the exclusively syntactic resolution of problems
often found in the recognition of context-dependent
languages. It is a collector of names (identifiers)
which, setting out from an initial situation in the

input stream and classifies then either as found
previously or not. By a change in the structure of
the device that implements it, later recognitions of
newly-collected identifiers will be dealt with as
already found before.
Based on the technique shown in the example, it is
possible to treat – without recourse to tables – the
names of the variables of a language with a single
scope. So, the mechanism implemented in this
example can inspire substitutes in the recogniser
project that replace the symbol tables with a purely
syntactic mechanism of name collecting [6].
At first the adaptive automaton recognises, through
its initial machine of states, any valid identifier, and
classifies it as an ignored identifier. By a structured
self-modifying in the device, the same identifier –
if found on a later occasion – will not be classified
as ignored again.
A group of transitions is then created so that the
new identifier is associated with a path by the
automaton states and those take it to a final state,
which accepts the identifier and characterises it as a
known identifier.
As soon as the identifier is characterised as known,
the old path accepting such identifier must be
eliminated from the automaton. Likewise, the
adaptive call functions responsible for these
operations must also be rearranged so that new
enlargements can take place as a consequence of
recognitions of identifiers sharing common prefixes
to previously found identifiers.
To each new identifier found, a set of transitions is
inserted into the automaton enabling it to recognise
the new symbol (taking into account the other
identifiers, previously incorporated) and the
transitions that implement the path leading to the
recognition of this identifier in the original
automaton is eliminated.

4 Definition of the Underlying
Mechanism

Our investigation probes into the viability of using
a functional programming language as an
underlying mechanism of the device, in a way
similar to that of an adaptive automaton using a
structured pushdown automaton as an underlying
mechanism for self-modification. This
investigation will likely enhance the development
of a functional programming language with the
adaptive characteristics.
Taken lambda calculus as the basis for functional
paradigm of programming, we will adopt a

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp423-428)

language supporting lambda calculus as an
underlying mechanism [2] [4].
It is the better adherence to the concepts of
adaptive technology that validates this choice
because the model allows the construction of
expressions with the treatment of dynamic codes
(usually implemented with constructions of eval
type in Lisp, Scheme or their dialects).
That duly considered, the underlying mechanism
will be made up of a functional nucleus based on
lambda calculus to operate as an interpreter of a
language codified by the user.
Having this basic functional nucleus extensive
characteristics, we will design an extensible
adaptive layer to evaluate calls of adaptive actions,
which will modify the host language, making it
adaptive.
With the processing of adaptive actions new code
instances are obtained and the execution of
language is processed by successive context switch
between the adaptive layer and the underlying
mechanism responsible for the interpretation of
each code instance.
Adaptive programming language will present, at an
early stages, a code block liable to direct
processing by the underlying mechanism until the
execution of some adaptive action specified in the
model takes place.
Adaptive language, thus, will be made up of a
space of codes LF1, LF2,.., LFn , so that, starting
from initial language LF1 and proceeding through
calls of adaptive functions, language will evolve
into successive configurations LF1, LF2, .., LFn

while execution is under process. The proposed
adaptive mechanism holds a close structural
analogy with the adaptive automaton dealt with in
item 3.
To demonstrate the feasibility of our proposal, we
will put to use a simplified language based on
expressions. As a rule, an expression is a list in
which the first element denotes a function and the
following others denote the arguments. Each
expression has to return a value. The language
presents some native functions to treat arithmetic
expressions and logics with, but the user may also
define new functions to be combined with those
already defined in the language.

5 Adaptive Language Operation

For our adaptive language to be processed, a
processing environment must be created, made up
of the functional nucleus and a control module,

represented by the adaptive machine whose
responsibility will be to evaluate adaptive calls.
Fig.1 shows what happens along the processing of
adaptive language.

Fig.1 - Adaptive Language – Processing Environment

1. The adaptive machine makes the functional
interpreter’s call based on lambda calculus and
passes to it the initial source code codified by
the user;

2. The functional interpreter will start the
evaluation processing of functions in the usual
way until some call of adaptive function takes
place. If there aren’t adaptive calls, the
interpreter will behave just as it were in a non-
adaptive functional environment;

3. The control returns to the adaptive machine,
which will provide the adaptive call handling;

4. Being adaptive actions made up of elementary
actions, the adaptive machine may use adaptive
layer functions;

5. As a result of the execution of adaptive actions,
a new source code is generated;

6. This new source code is handed down to the
functional interpreter, which will take upon
itself the continuity of the execution of the
adaptive functions.

6 Adaptive Layer Project

In a manner similar to that along the evolution of
an adaptive automaton, when inclusions and/or
exclusions of transitions and/or states take place –
derived from the calls of adaptive actions – our
adaptive language will also develop during
execution through the inclusion or exclusion of
functions, thus characterising the dynamics of
adaptive code.
The calls of adaptive functions (denoted by
adaptive actions) will then favour the features of

Initial Source

Interpreter

LambdaCalculus

Adaptive Layer
ADAPTIVE
LIBRARYADAPTIVE MACHINE 4

Source Code

1 5

2

6

3

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp423-428)

self-modification in the device. These functions
will be constituted by calls of elementary functions,
available in the adaptive layer, which through basic
operations of query, inclusion, and removal of
language functions will provide the device with
dynamic modification.
Our adaptive layer, thus, will be made up of
elementary actions ?adapt, +adapt, and –adapt,
responsible respectively for the query, addition, and
eliminations functions of the underlying language.
This set of elementary actions will correspond to
the rules modifying in consequence the execution
of adaptive language.
Naturally, for each individual problem, elementary
actions will be extracted from the adaptive layer in
amount and sequence convenient for the problem at
issue.
To generalise consult functions, queries modelled
according to pattern matching can be specified so
as to return the functions list that fulfills the query.
For the functions of adaptive layer to perform their
tasks, the functions making up our source program
must be somehow addressed, in a similar way that
an adaptive action – when eliminating or inserting a
transition in an adaptive automaton – needs to refer
to each of the original automaton’s states or
transitions.
The language used will be simple and based on
expressions, so that a program in this underlying
language may be reduced to the call of a single
function, resulting from the composition of several
other functions.
A program P then can be represented under the
configuration if a list. For instance:

 (a (b (c) (d) (e f g)) (h i))

To make the idea of our functional program easier
to envisage to the light of adaptive paradigm, the
opening of parentheses will be indexed with the use
of labels represented by whole numbers. These
labels will start with the value 1 in the definition of
the first function and will gradually increase as the
new definition or function calls turn up along the
text of the program.
Since a functional program can be represented by a
tree-type structure, each label should be seen as a
node from such a tree. So, in the previous example,
our functional program P will be represented as
follows:

1 2 3 4 5 6
(a (b (c) (d) (e f g)) (h i))

 3 4 5 2 6 1

For an adaptive treatment to be operated in a
functional program, it takes first of all a translation
framework allowing form a representation of the
program closer to the adaptive formalism.
After the mapping is completed, the program has to
be converted in to a new representation P’:

1 2 3 4 5 6
((F) (a (b (c) (d) (e f g)) (h i)) (G))

 3 4 5 2 6 1

F and G corresponding respectively to the adaptive
functions previous and subsequent to the evaluation
of the function representing program P’.
These functions will be responsible for the self-
modification of the device and will operate on the
labels attributed to each function making up the
initial program P’. For instance: if it becomes
necessary for the adaptive function F to eliminate
function d in program P’, label 4 is passed as
parameter and as a result of the evaluation of
adaptive function F, node 4 corresponding to
function d will be eliminated from the tree.
This being the procedure, the functional program P
is then represented by a new P’ function, in which
all component functions are mapped form the
adaptive functional notation. If there aren’t
adaptive functions in the device, the representation
P’ will naturally be the same as the initial P, which,
in this instance, doesn’t characterize the existence
of self-modifications.
Through the identification of each function in the
program, each corresponding node in the tree of
expressions can be referred. In the previous
example, the tree would be shown like this:

Fig.2 - Tree representing a program P

With the use of this address outline, exclusive for
each component of the program, it is possible to
specify adaptive functions that, through calls of the
adaptive layer, will increase, remove, or alter the
nodes of the tree, thus generating an adaptive code.
For our adaptive functions to accomplish the
edition of the tree, labels should be included in the
adaptive language, which allow the addressing of
the several functions that make up the program.
The linking of labels to the functions of the

4
label

3

1

2 6

5

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp423-428)

program should naturally be optional and turned to
only when the function at issue undergoes self-
modification.
To implement this function of adaptive layer, a
mechanism similar to the one employed in
Common Lisp language [10] can be used by means
of the “go” and “tagbody” native functions. In case
these constructs are not present in the functional
nucleus of the adaptive environment, it is possible
to emulate such functions through definitions
starting from other functions present in the
language [1].

7 Conclusions

This paper considers the use of the programming
language an underlying device in the adaptive
device. The language thus obtained allows the
introduction of dynamic characteristics into the
initial code of language. We have shown the steps
leading to this objective.
With the concepts and procedures presented along
this paper, we have shown that the implementation
of the adaptive language is feasible and can be
consequently applied to problems to which
adaptive technology is recommended.
The next steps will involve strict specification of
the syntax and semantics of the language proposed
along with the implementation of the adaptive
module responsible for the control of the adaptive
environment. The definition of the functions of
label treatment and elementary actions of the
adaptive layer is to be attended to, as well as the
implementation of routines to control module-
switching (adaptive x functional) and the
procedures to treat environment variables.
After these specifications, it will be possible to
implement an environment allowing the execution
of the adaptive language. Some experiments with
the project of adaptive language have already been
made, the NewLisp environment [5] being used in
the implementations.

8 References

[1] Baker, Henry G. - Metacircular Semantics
for Common Lisp Special Forms. Nimble
Computer Corporation. ACM Lisp Pointers
V, 4 (Oct/Dec1992), 11-20.

[2] Barendregt, H.P. - The Lambda Calculus:
its syntax and semantics – (2nd ed.), North-
Holland, 1984.

[3] Knott, Gary - LispBook – Civilized Software,
Inc. – 1997.

[4] McCarthy, J. - Recursive Functions of
Symbolic Expressions and Their Computation
by Machine, Part-I. CACM 3,4 (1960), 184-
195.

[5] Mueller, Lutz - NewLisp User Manual and
Reference V. 7.50 – 2004 –
www.newlisp.org.

[6] Neto, João José - Contribuição à metodologia
de construção de compiladores. São Paulo,
1993, 272p. Thesis (Livre-Docência), Escola
Politécnica, Universidade de São Paulo.

[7] Neto, João José - Adaptive Rule-Driven
Devices - General Formulation and Case
Study. Lecture Notes in Computer Science.
Watson, B.W. and Wood, D. (Eds.):
Implementation and Application of Automata
- 6th International Conference, CIAA 2001,
Vol.2494, Pretoria, South Africa, July 23-25,
Springer-Verlag, 2001, pp. 234-250.

[8] Neto, João José - Adaptive Automata for
Context - Sensitive Languages. SIGPLAN
NOTICES, Vol. 29, n. 9, pp. 115-124,
September, 1994.

[9] Rocha, Ricardo Luis de Azevedo da e Neto,
João José - Uma proposta de linguagem de
programação funcional com características
adaptativas. IX Congreso Argentino de
Ciencias de la Computación, La Plata,
Argentina, 6-10 de Outubro, 2003.

[10] Steele, Guy L. - Common Lisp, The
Language; 2nd Ed. Digital Press, Bedfor,
MA, 1990.

[11] Pistori, Hemerson – Tecnologia em
Engenharia da Computação: Estado da Arte e
Aplicações. Tese de Doutorado – Escola
Politécnica da Universidade de São Paulo.
2003

[12] Santos, J.M.N. - Um formalismo adaptativo
com mecanismo de sincronização para
aplicações concorrentes. Dissertação
(Mestrado) – Escola Politécnica da
Universidade de São Paulo, Brasil, 1997.

[13] Basseto, B. A., Neto, J.J. - A stochastic
musical composer based on adaptative
algorithms. In: Anais do XIX Congresso
Nacional da Sociedade Brasileira de
Computação. SBC-99. PUC-Rio, Rio de
Janeiro, Brasil – 1999.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp423-428)

[14] Menezes, C.E.D. – Um método para a
construção de Analizadores Morfológicos,
Aplicados à Lingua Portuguesa, Baseado em
Autômatos Adaptativos. Dissertação
(Mestrado) – Escola Politécnica da
Universidade de São Paulo, São Paulo –
Brasil, Julho 2000.

[15] Iwai, M. K. – Um formalismo gramatical
adaptativo para Linguagens dependentes de
Contexto. Tese (Doutorado) – Escola
Politécnica da Universidade de São Paulo,
São Paulo, Brasil, 2000.

[16] Freitas, A. V.; Neto, J.J. - Uma ferramenta
para construção de aplicações
multilinguagens de programação. In: CACIC
2001 – Congreso Argentino de Ciencias de la
Computacion. El Calafate, Argentina, 2001.

[17] Souza, M. A. A., Hirakawa, A. R., Neto, J. J.
- Adaptive Automata for Mobile Robotic
Mapping. Proceedings of VIII Brazilian
Symposium on Neural Networks - SBRN'04.
São Luís/MA - Brazil. September 29 -
October 1, 2004.

[18] Rocha, R. L. A.; Neto, J.J. - Uma proposta de
método adaptativo para a seleção automática
de soluções. In: Proceedings of ICIE Y2K –
International Congress on Informatics
Engineering. Buenos Aires, Argentina. 2000.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp423-428)

