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Abstract 
This paper studies influence diagnostics (Cook’s Distance and Likelihood Distance) on 
competing risk models when true covariates are observable. The one-step EM and one-
step ML methods are used to detect influential observations for Cox’s model. It was 
found that results generated from data analysis using one-step EM algorithm are better 
than results obtained by using one-step ML method. Moreover, Cook’s distance show 
better results compare to likelihood distance. 
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1. Introduction 
Diagnostics are used to assess the adequacy of assumptions underlying the modeling 
process and to identify unexpected characteristics of the data that may seriously influence 
conclusions or require special attention. A variety of graphical and nongraphical methods 
are available to aid one in linear regression analyses (Cook and Weisberg 1982) but most 
of these methods require the a priori specification of a model. Outliers and influential 
observations, for example, are always judged relative to some model, either implicit or 
explicit. 
 
The detection of influential observations, that is observations whose deletion, either 
singly or multiply, result in substantial changes in parameter estimates, fitted values or 
tests of hypothesis, has received considerable attention in recent years. Several methods 
have been proposed for studying the impact of deletion of observations on parameter 
estimates obtained from the linear model (Belsley, Kuh & Welsch, 1980; Cook 
&Weisberg, 1982), the logistic regression model (Pregibon, 1981; Johnson, 1985), the 
Weibull model for censored data (Pregibon, 1981) and the proportional hazards model 
(Reid & Crepeau, 1985, Bin Daud 1987, Noor Akma 1994, Elfaki 2000). 
The focus of this paper is use of diagnostic technique by performing it on independent 
competing risks with case deletion using proportional hazards model based on censored 
data.   
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2. The Proportional hazards Regression Model 
We assume that we have n  cases and for each we observe the vector ),,( zt δ where t is 
the time until failure, if the case is uncensored )1( =δ , or it is the time until removal or 
censoring )0( =δ . For each case there is a 1×p  vector z  of the explanatory or 
regression variables. The proportional hazards regression model is defined as follows; we 
let the hazard function of the failure time to a time constant vector explanatory variable 
z  by taking 
    )exp()()/( βλ ztzth =            (1) 
where )(tλ  is an unspecified base-line hazard function corresponding to the case 0=z  
and β  is a 1×p  regression parameter. Cox (1972; 1975) proposed that we may use the 
partial likelihood  
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for inference concerning β , where the product is evaluated over all observed uncensored 
failure times, and iR  is the “risk set” for ith  observed failure, that is, the set of individual 
surviving and uncensored at t . 
 
To find β̂  usually 0)( =βU  is solved where )(βU  is the 1×p  score vector of 
derivatives of )(βL , the log likelihood is 
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From equation (3) we obtained 
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By taking the second derivative of equation (3), an expression is obtained which has the 
form of a variance. For example, the derivative of (4) with respect to pβ  is: 
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Maximum-likelihood estimates of β  can be obtained by iterative (EM algorithm or 
Newton-Raphson methods) use of (4) and (5) in usual way. 
 
3. Influence Measurement 
A general approach to influence is given in Cook and Weisberg (1982). We shall confine 
our study mainly by adopting the case deletion approach. In linear regression, Cook 
(1977), Cook and Weisberg (1982) and others, suggested a suitably weighted 
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combination of the changes ββ ˆˆ −i  as measures of influence. They all gave versions of 
the Cook’s (1977) distance define as; 

 )/()]ˆˆ()ˆˆ[( 2
)(

''
)( σββββ sXXD iii −−= ,  ni ,...,1=          (6) 

where β̂  indicates an estimate for β  with full data. Full data in this context refers to the 
failure time1 for all observations that can be obtained until the study is completed, while 

)(
ˆ

iβ  indicates estimate for β  by deleting data point i , XX ′  is a positive (semi-) definite 

matrix, s  is the parameter number, and 2σ  is the variance. Likewise, equation (6) 
becomes the basis for most distance measurements in detecting the influence of an 
observation or a case.  
 
Influence measurements for the ordinary least square are generally based on the change 
in parameter estimate when the i  observation is deleted, that is, ββ ˆˆ −i , where iβ̂  is the 
estimate of iβ  when the ith  observation is deleted (Cook & Weisberg, 1980; Belsley et 
al., 1980). This difference in measurement has been applied in other computationally 
more complex settings by using a one-step estimate of iβ̂  (Cook & Wang, 1983), and can 
be implemented for either the EM algorithm or Newton-Raphson method that will be 
discussed in a later section in this paper. For a single deletion with the ith  case omitted 
from data, the change is given by 
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where iX  is the ith  row of the design matrices X , ir  is the ith  residual and iim  is the 
ith  diagonal element of the projection matrices Hm −= 1  with .)( 1 XXXXH ′′= −  
 
4. Cook’s Distance 
To get the influence in equation (7) in a quantitative form, which is more meaningful, we 
used Cook’s distance (Cook, 1977, 1979; Cook and Weisberg, 1982), which was defined 
earlier in this paper by equation (6). The usefulness of this is the availability of several 
ways to measure the scale of change vector involved in perturbation like equation (7), as 
suggested. For normal linear regression model with the least square, Cook (1977) 
recommended a form of scale measurement known as Cook’s distance, which is given as 
follows,  

    2ˆ
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where β̂  is the estimate of the least square for full data, iβ̂  is the estimate of iβ  when 
the i  observation is deleted, q  is the parameter number and 2σ̂  is the estimate of 
variance. 

                                                 
1 The time observed on individual or object from one original point to the time an anticipated event occurs. 
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In line with the least square technique, Pregibon (1981) has produced a matrix which has 
a role like H. Cook’s distance will be considered based on Cook and Weisberg (1982), 
that is, 

g
M

D ii
i

)ˆˆ()ˆˆ( ββββ −′−
=                       (9) 

where M  is a semi positive exact symmetry matrices, and g  a positive scale factor. 
 
5. Likelihood Distance 

A more general method to get measurement of influence is by using contour 
measurement for the log likelihood function. Let )(βL  be the log likelihood on 
parameter β  based on full data. Likelihood distance (Cook and Weisberg, 1982) is 
defined as 

[ ])()(2 ii LLLD ββ −=                   (10) 

where )( iL β  is the log likelihood function of iβ  when the i  observation is deleted. iLD  
measurement can also be interpreted in terms of the asymptotic confidence region (see 
Cox and Hinkley, 1974) 
    { } );()()(2: 2 sLL i αχβββ ≤−                    (11) 
where );(2 sαχ  is the upper α  point from chi-squared distribution with s  degree of 
freedom. 
 
If the log likelihood contours are approximately elliptical, iLD  is quadratic, and can be 

drawn closer to Taylor’s expansion around β̂ , as follows, 
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−  is the observed information matrix. This approach can be confusing if 

log likelihood contour is nonelliptical. Hence, the approach of Taylor’s expansion for log 
likelihood, which is not elliptic, needs a better development, which will involve a 
complex expression. 

 
6. Methods for Estimation 
We turn now to a discussion of methods that can be used to detect influential cases under 
competing risks model that is fitted to censored data. The s'β  are found by iterative 
numerical techniques. This is a cumbersome task, since, apart from the computation 
needed to obtain β̂ , we are still required to calculate for each iβ , ni ,...,2,1= . To reduce 
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computation, approximations to iβ  are of great value. An obvious choice in such a 
situation is the one-step technique, that is, to compute from the maximum likelihood 
estimate β̂   the first step of an iterative process to find iβ̂ .  
Cain and Lange (1984) considered the case-weight perturbation scheme in proportional 
hazard regression model by 
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where iz , iδ , and β  are defined in earlier in this paper, and iw  is a vector of ones for the 
complete data set-up. If  0=iw  and the other swi '  are one, then )/( wl β  corresponds to 

the partial likelihood with the ith  case omitted, and )(ˆ wβ  corresponds to iβ̂ . Using the 
perturbation scheme as in equation (14), we have )0/( =iwl β  equivalent to the partial 
likelihood with ith  case omitted from the data set. Our attempt to change the parameter 
involves one-step iterative for maximizing )(βl  applied to )0/( =iwl β  starting at β̂ .  
The one-step iterative method for competing risks model is complex, due to the 
expression to log likelihood. The one-step methods for both EM algorithm and Newton-
Raphson will be discussed in the following section. 
 
6.1. One-step EM  
The general arguments that follow are applicable in the scale Cox’s finite, and continuous 
models, only by using the EM and ML methods. The one-step techniques, as mentioned 
earlier in this paper, which are defined to be the maximum likelihood estimate of β  with 
the ith  case deleted, are formed by taking one-step of the iterative process for finding iβ̂  

starting at β̂ . The EM approach with exponential distribution is the best suited for 
adapting to cases that are deleted from the data set. We can define the resulting iterative 
weighted least square scheme for the full data by 
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where z  is the pn×  design matrices of the covariates, and b  has a component 
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The covariate matrices z  are column centered, that is, ∑
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The change in estimates, after deletion of the ith  observation, based on the one-step EM 
algorithm, is given by 

[ ] T
ii

T
ii zzz 1ˆˆ −

=− ββ                     (17) 
where iz  is the covariate matrices obtained from z  with the ith  row omitted, starting 

from ββ =ˆ .  
 
6.2. One-step ML 
The iterative scheme for the Newton-Raphson is given by  

)()(ˆ *1** ββββ −+= IU                    (18) 
where )( *βU  and )( *1 β−I  are defined in equation (4) and (5). Using the same 
arguments as in the preceding section, the one-step change from β , for a Newton-
Raphson scheme such as (18), is written as  

)()(ˆˆ 1 ββββ −=− iii IU          (19) 
where iU  is the ith  element of )(βU  and iI  is the ith  element of I . Equation (19) is 
equivalent to that of the robust method of Cook and Weisberg, (1982).  
The one-step estimate can be computed directly at the final iteration for full data, thus a 
one-step influence measures may be obtained. SAS software may easily be used to carry 
out the computation of (17) and (19). However, for ease of manipulation of matrices, the 
computation in our analysis is programmed in SAS. Results from some simulation data 
sets are given in the next section. 
 
7. Simulation Data 
The two simulations were performed according to two different sample sizes with 
varying percentage of censored observation (simulation 1 and 2 for sample size 15 with 
50 percent censoring, sample size 30 with 33 percent censoring, respectively, generated 
1000 times). We took the average for the failure time and covariate to make the 
calculation simple. To generate failure time, the value of 45.=λ  for the first type of 
failure and 057.=λ  for the second type of failure were used. In this simulation, the 
objective is to find Cook’s distance based on equation (6) and likelihood distance based 
on equation (10) from the first risk and the second risk for every sample size. Both 
distances were calculated by using one-step EM algorithm based on equation (17) and 
one-step ML based on equation (19) under competing risks model. 
 
Simulation 1 (sample size 15 with 50 percent censoring), in Table 1, shows the Cook’s 
distance and likelihood distance obtained by the one-step EM algorithm and one-step ML 
under competing risk model based on equation (1).  
From the first risk ),1( =k  based on a large value for Cook's distance from both methods, 
and the five observations, that is, number 5, 7, 9, 11, and 14, show a large influence on 
parameter estimates compared to other observations. This can clearly be seen in Figures 1 
and 2. Also, based on a large value for likelihood distance, the same observations show to 
have a large influence on parameter estimates, compared with other observations, as it 
can clearly be seen in Figures 3 and 4. But, Cook's distance obtained by both methods 
was found to have smaller value compared with likelihood distance. 
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From the second risk ),2( =k the observations number 5, 7, 9, 11 and 14 showed to have 
large value from Cook's distance and likelihood distance obtained by one-step EM. The 
same observations and observations number 13 and 15 have large value from likelihood 
distance obtained by one-step ML method. However, Cook's distance obtained by both 
methods has smaller value compared with likelihood distance. Finally, the Cook's 
distance and likelihood distance obtained by one-step EM algorithm showed to be smaller 
than the others obtained by one-step ML methods from both risks. 
 
Plots of Cook's distance ( iD ) and Likelihood distance ( iLD ) one-step EM (first risk) 
against case number were given in Figure 1 and 3, respectively. Inspecting the sDi ' , the 
following can be inferred: case 7 has 33.7 =D  and 63.07 =LD  for iD  and iLD , 
respectively, suggesting that case 7 for iLD , 63.07 =LD , may have a large enough 
influence to induce the anomaly. Similarly, for iD  and iLD  one-step ML (first risk), 
Figure 2 and 4, respectively, in cases 5 and 14, that is, 198.0145 == DD  for iD , while 

58.07 =LD  for iLD  for case 7. 
 
However, considering Figures 5 and 7 for iD  and iLD , respectively, similar results with 
a possible cause: case 7 with 32.07 =D  for iD  and case 11 with 37.011 =LD  for iLD are 
obtained by one-step EM from the second risk, while iD  and iLD  for one-step ML from 
second risk (Figure 6 and 8, respectively) are obtained in case 14 with 214.014 =D  and 
case 7 with 58.07 =LD . Despite the fact that sLDi '  have higher values for both one-step 
EM and ML from the second risk, it can clearly be seen that the ranges between the 
highest two values is too small compared to the highest two values of sDi ' . 
 
 
 

Figure 1: Cook's Distance from simulation 1 obtained by one-step EM (first risk) 
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Table 1: Cook's distance and Likelihood distance obtained by one-step EM and one-step 
ML under competing risks model from simulation 1 (sample size 15) 
---------------------------------------------------------------------------------------------------- 

First Risk 
---------------------------------------------------------------------------------------------------- 
      One-step EM    One-step-ML 
case   Cook's D Likelihood D  Cook's D Likelihood D 
---------------------------------------------------------------------------------------------------- 
1  0.003  0.055   0.054  0.062 
2  0.025  0.028   0.045  0.061 
3  0.044  0.050   0.044  0.056 
4  0.015  0.016   0.034  0.024 
5  0.122  0.16   0.198  0.30 
6  0.058  0.08   0.058  0.09 
7  0.33  0.63   0.057  0.58 
8  0.003  0.005   0.043  0.025 
9  0.195  0.30   0.088  0.12 
10  0.001  0.002   0.045  0.06 
11  0.214  0.30   0.088  0.14 
12  0.001  0.001   0.054  0.04 
13  0.009  0.012   0.089  0.12 
14  0.214  0.31   0.198  0.34 
15  0.017  0.017   0.054  0.061 
---------------------------------------------------------------------------------------------------- 

Second Risk 
---------------------------------------------------------------------------------------------------- 
      One-step EM    One-step-ML 
case   Cook's D Likelihood D  Cook's D Likelihood D 
---------------------------------------------------------------------------------------------------- 
1  0.004            -0.065   0.005  0.062 
2  0.025  0.028   0.045  0.061 
3  0.045  0.055   0.046  0.067 
4  0.016  0.036   0.034  0.044 
5  0.152  0.36   0.198  0.45 
6  0.068  0.08   0.088  0.095 
7  0.327  0.34   0.078  0.58 
8  0.003  0.097   0.045  0.097 
9  0.213  0.36   0.088  0.253 
10  0.003  0.042   0.065  0.06 
11  0.214  0.37   0.088  0.41 
12  0.002  0.052   0.056  0.063 
13  0.009  0.195   0.089  0.21 
14  0.214  0.34   0.214  0.44 
15  0.037  0.223   0.055  0.261 
--------------------------------------------------------------------------------------------------- 
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Figure 2: Cook's Distance from simulation 1 obtained by one-step ML (first risk) 

 

Figure 3: Likelihood distance from simulation 1 obtained by one-step EM (first risk) 
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Figure 4: Likelihood distance from simulation 1 obtained by one-step ML (first risk) 

 

 

Figure 5: Cook's distance from simulation 1 obtained by one-step EM (second risk) 
 

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 5 10 15 20
case number

Li
ke

lih
oo

d 
D

LD-ML

-0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

0 5 10 15 20
case number

C
oo

k'
s 

D

CD-EM

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp124-138)



 11

 

Figure 6: Cook's distance from simulation 1 obtained by one-step ML (second risk) 
 

 

Figure 7: Likelihood distance from simulation 1 obtained by one-step EM (second risk) 
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Figure 8: Likelihood distance from simulation 1 obtained by one-step ML (second risk) 
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Table 2: Cook's distance and Likelihood distance obtained by one-step EM and  one-step 
ML under competing risks model from simulation 2 (first risk) 
---------------------------------------------------------------------------------------------------- 

First Risk 
---------------------------------------------------------------------------------------------------- 
      One-step EM    One-step-ML 
case   Cook's D Likelihood D  Cook's D Likelihood D 
---------------------------------------------------------------------------------------------------- 
1  0.000  0.001   0.105   0.423 
2  0.000  0.004   0.012   0.168 
3  0.008  0.141   0.010   0.014 
4  0.000  0.008   0.012   0.047 
5  0.000  0.0003   0.012   0.0167 
6  0.007  0.136   0.010   0.191 
7  0.006  0.1225   0.134   0.214 
8  0.000   0.003   0.012   0.024 
9  0.000  0.007   0.012   0.034 
10  0.007  0.164   0.010   0.097 
11  0.006  0.120   0.010   0.095 
12  0.000  0.002   0.012   0.123 
13  0.000   0.006   0.105   0.034 
14  0.000  0.0022   0.012   0.043 
15  0.000  0.0045   0.105   0.054 
16  0.006  0.1272   0.010   0.024 
17  0.000  0.001   0.012   0.165 
18  0.006  0.1188   0.134   0.054 
19  0.007  0.1293   0.010   0.054 
20  0.006  0.1275   0.010   0.077 
21  0.000  0.003   0.012   0.168 
22  0.000  0.004   0.012   0.045 
23  0.007  0.137   0.010   0.097 
24  0.005  0.115   0.134   0.123 
25  0.000  0.001   0.012   0.021 
26  0.006  0.121   0.010   0.0158 
27  0.000  0.0045   0.105   0.043 
28  0.006  0.124   0.010   0.158 
29  0.000  0.008   0.012   0.168 
30  1.077  0.000   0.010   0.158 
---------------------------------------------------------------------------------------------------- 
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Table 3: Cook's distance and Likelihood distance obtained by one-step EM and one-step 
ML under competing risks model from simulation 2 (second risk) 
---------------------------------------------------------------------------------------------------- 

Second Risk 
---------------------------------------------------------------------------------------------------- 
      One-step EM    One-step-ML 
case   Cook's D Likelihood D  Cook's D Likelihood D 
---------------------------------------------------------------------------------------------------- 
1  0.001  0.001   0.005   0.003 
2  0.001  0.004   0.012   0.168 
3  0.010  0.141   0.010   0.014 
4  0.002  0.008   0.010   0.075 
5  0.003  0.0003   0.012   0.017 
6  0.007  0.136   0.010   0.214 
7  0.006  0.1225   0.145   0.214 
8  0.001   0.003   0.012   0.024 
9  0.002  0.007   0.010   0.034 
10  0.007  0.164   0.010   0.097 
11  0.006  0.120   0.010   0.095 
12  0.001  0.002   0.012   0.173 
13  0.000   0.006   0.005   0.034 
14  0.000  0.0022   0.012   0.043 
15  0.004  0.0045   0.005   0.054 
16  0.006  0.1272   0.010   0.024 
17  0.000  0.001   0.012   0.156 
18  0.008  0.1188   0.145   0.054 
19  0.007  0.1293   0.010   0.054 
20  0.007  0.1275   0.010   0.077 
21  0.000  0.003   0.012   0.168 
22  0.003  0.004   0.012   0.045 
23  0.007  0.137   0.010   0.097 
24  0.008  0.115   0.145   0.123 
25  0.000  0.001   0.012   0.021 
26  0.009  0.121   0.010   0.0158 
27  0.000  0.0045   0.005   0.043 
28  0.005  0.124   0.010   0.058 
29  0.000  0.008   0.012   0.168 
30  1.230  0.000   0.010   0.580 
---------------------------------------------------------------------------------------------------- 
 
8. Conclusion  
The influence measurements are based on case deletion. Within this technique, a vector 
needs to be introduced so that an assessment on the case can be used to obtain Cook’s 
distance and likelihood distance. The diagnostic techniques and influence used identify 
cases of influence constructed for competing risk model were successful, and these 
techniques were able to identify odd cases using the simulation data sets(Elfaki, 2000). 
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One-step technique was used to derive the estimate of parameter, followed by distance 
measurement. These techniques are one-step EM and one-step ML. they were introduced 
to reduce the iterative steps in computing the influence measurements. It was found that 
from both simulations the Cook’s distance was significant compare to likelihood distance 
because it can show clearly the outlier observation. Also the results obtained by one-step 
EM is significant compare to the one obtained by one-step ML. 
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