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Abstract: We present in a unified and explicit way the systems of orthogonal polynomials defined
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coherent states. This general formalism allows us to extend some known results to a larger class of
functions.
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1 Introduction
Many problems in quantum mechanics and mathe-
matical physics lead to equations of the type

σ(s)y′′(s) + τ(s)y′(s) + λy(s) = 0 (1)

where σ(s) and τ(s) are polynomials of at most
second and first degree, respectively, and λ is a
constant. These equations are usually called equa-
tions of hypergeometric type [15], and each can be
reduced to the self-adjoint form

[σ(s)%(s)y′(s)]′ + λ%(s)y(s) = 0 (2)

by choosing a function % such that

[σ(s)%(s)]′ = τ(s)%(s). (3)

The equation (1) is usually considered on an
interval (a, b), chosen such that

σ(s) > 0 for all s ∈ (a, b)
%(s) > 0 for all s ∈ (a, b)

lims→a σ(s)%(s) = lims→b σ(s)%(s) = 0.
(4)

Since the form of the equation (1) is invariant un-
der a change of variable s 7→ cs + d, it is sufficient

to analyse the cases presented in table 1. Some
restrictions must be imposed on α, β in order for
the interval (a, b) to exist.
The literature discussing special function theory
and its application to mathematical and theo-
retical physics is vast, and there are a multitude
of different conventions concerning the definition
of functions. A unified approach is not possible
without a unified definition for the associated spe-
cial functions. In this paper we define them as

Φl,m(s) =
(√

σ(s)
)m dm

dsm
Φl(s) (5)

where Φl are the orthogonal polynomials defined
by equation (1). The table 1 allows one to pass in
each case from our parameters α, β to the param-
eters used in different approach.

In our previous papers [6, 7], we presented a sys-
tematic study of the Schrödinger equations exactly
solvable in terms of associated special functions
following Lorente [14], Jafarizadeh and Fakhri [12].
In the present paper, our aim is to extend this
unified formalism by including a larger class of
creation/annihilation operators and some tempo-
rally stable coherent states of Gazeau-Klauder
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Table 1: Particular cases (in each case τ(s) = αs+β)

σ(s) %(s) α, β (a, b)

1 eαs2/2+βs α < 0 (−∞,∞)

s sβ−1eαs α<0
β >0

(0,∞)

1−s2
(1+s)−(α−β)/2−1×
×(1−s)−(α+β)/2−1

α<β
α+β <0

(−1, 1)

s2−1
(s+1)(α−β)/2−1×
×(s−1)(α+β)/2−1

0<α+β
α < 0

(1,∞)

s2 sα−2e−β/s α<0
β >0

(0,∞)

s2+1
(1 + s2)α/2−1×
× eβ arctan s

α < 0 (−∞,∞)

type [1, 2, 8, 9, 10, 13].

2 Associated special functions,
raising and lowering operators

It is well-known [15] that for λ = λl, where

λl = −σ′′(s)
2

l(l−1)−τ ′(s)l= −σ′′

2
l(l−1)−α l (6)

and l ∈ N, the equation (1) admits a polynomial
solution Φl = Φ(α,β)

l of at most l degree

σ(s)Φ′′l + τ(s)Φ′l + λlΦl = 0. (7)

If the degree of the polynomial Φl is l then it satis-
fies the Rodrigues formula [15]

Φl(s) =
Bl

%(s)
dl

dsl
[σl(s)%(s)] (8)

where Bl is a constant. Based on the relation

{ δ ∈ R | lim
s→a

σ(s)%(s)sδ = lim
s→b

σ(s)%(s)sδ = 0 }

=

{
[0,∞) if σ(s) ∈ {1, s, 1− s2}

[0,−α) if σ(s) ∈ {s2 − 1, s2, s2 + 1}
one can prove [7] that the system of polynomials
{Φl | l < Λ}, where

Λ=

{
∞ for σ(s) ∈ {1, s, 1− s2}
1−α

2 for σ(s) ∈ {s2−1, s2, s2+1}
(9)

is orthogonal with weight function %(s) in (a, b).
This means that equation (1) defines an infinite
sequence of orthogonal polynomials

Φ0, Φ1, Φ2, ...

in the case σ(s) ∈ {1, s, 1− s2}, and a finite one

Φ0, Φ1, ..., ΦL

with L = max{l ∈ N | l < (1− α)/2} in the case
σ(s) ∈ {s2 − 1, s2, s2 + 1}.

The polynomials Φ(α,β)
l can be expressed in

terms of the classical orthogonal polynomials as

Φ(α,β)
l (s) =

=



Hl

(√
−α
2 s− β√

−2α

)
if σ(s) = 1

Lβ−1
l (−αs) if σ(s) = s

P
(−(α+β)/2−1, (−α+β)/2−1)
l (s) if σ(s) = 1−s2

P
((α−β)/2−1, (α+β)/2−1)
l (−s) if σ(s) = s2−1(
s
β

)l

L1−α−2l
l

(
β
s

)
if σ(s) = s2

ilP ((α+iβ)/2−1, (α−iβ)/2−1)
l (is) if σ(s) = s2+1

(10)

where Hn, Lp
n and P

(p,q)
n are the Hermite, La-

guerre and Jacobi polynomials, respectively.
Let l ∈ N, l < Λ, and let m ∈ {0, 1, ..., l}. The

functions

Φl,m(s) = κm(s)
dm

dsm
Φl(s) (11)

where
κ(s) =

√
σ(s)

are called the associated special functions. If we
differentiate (7) m times and then multiply the
obtained relation by κm(s) then we get the equa-
tion

HmΦl,m = λlΦl,m (12)

where Hm is the differential operator

Hm = −σ(s)
d2

ds2
− τ(s)

d

ds
+

m(m− 2)
4

(σ′(s))2

σ(s)

+
mτ(s)

2
σ′(s)
σ(s)

− 1
2
m(m− 2)σ′′(s)−mτ ′(s). (13)

The relation

〈f, g〉 =
∫ b

a
f(s) g(s)%(s)ds (14)
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defines a scalar product on the space

Hm = span{Φl,m | m ≤ l < Λ}

spanned by {Φl,m | m ≤ l < Λ}. For each m < Λ,
the special functions Φl,m with m ≤ l < Λ are or-
thogonal with weight function %(s) in (a, b), and
the functions corresponding to consecutive values
of m are related through the raising/lowering oper-
ators [6, 7, 12]

Am = κ(s) d
ds −mκ′(s)

A+
m = −κ(s) d

ds −
τ(s)
κ(s) − (m− 1)κ′(s)

(15)

namely,

AmΦl,m =
{

0 for l = m
Φl,m+1 for m < l < Λ

A+
mΦl,m+1 = (λl−λm)Φl,m for 0 ≤ m < l < Λ.

(16)
In addition, we have the relations [5, 11]

Φl,m =
A+

m

λl − λm

A+
m+1

λl − λm+1
...

A+
l−1

λl − λl−1
Φl,l (17)

for 0 ≤ m < l < Λ, and

Hm−λm = A+
mAm Hm+1−λm = AmA+

m (18)

HmA+
m = A+

mHm+1 AmHm = Hm+1Am (19)

for m + 1 < Λ.
The functions

Ψl,m = Φl,m/||Φl,m|| (20)

where
||f || =

√
〈f, f〉 (21)

are the normalized associated special functions.
Since [6, 7]

||Φl,m+1|| =
√

λl − λm ||Φl,m|| (22)

they satisfy the relations

AmΨl,m =
{

0 for l = m√
λl − λmΨl,m+1 for m < l < Λ

A+
mΨl,m+1 =

√
λl − λmΨl,m for 0 ≤ m < l < Λ

Ψl,m = A+
m√

λl−λm

A+
m+1√

λl−λm+1
...

A+
l−1√

λl−λl−1
Ψl,l.

(23)

3 Creation and annihilation
operators

Let m be a fixed natural number and γ a fixed real
number. In the case σ(s)∈ {1, s, 1−s2}, the only
considered in sequel, the sequence

Ψm,m, Ψm+1,m, Ψm+2,m, . . .

is a complete orthonormal sequence in the Hilbert
space

H =
{

f : (a, b) −→ C
∣∣∣∣ ∫ b

a
|f(s)|2%(s) ds < ∞

}
with scalar product (14). The linear operators

am, a+
m : Hm −→ Hm

am = U−1
m Am a+

m = A+
mUm

(24)

defined by using the unitary operator

Um : Hm −→ Hm+1

UmΨl,m = e−iγ(λl+1−λl)Ψl+1,m+1

(25)

are mutually adjoint (see figure 1),

amΨl,m=
{

0 for l=m√
λl−λmeiγ(λl−λl−1)Ψl−1,m for l>m

a+
mΨl,m=

√
λl+1−λme−iγ(λl+1−λl)Ψl+1,m for l≥m

(26)
and

Hm − λm = a+
mam (27)

[a+
m, am]Ψl,m = (λl − λl+1)Ψl,m = (σ′′l + α)Ψl,m.

Since the operator Rm = [a+
m, am] satisfies the re-

lations

[Rm, a+
m] = σ′′a+

m [Rm, am] = −σ′′am (28)

the Lie algebra Lm generated by {a+
m, am} is finite

dimensional.

Theorem 1.

Lm is isomorphic to

{
h(2) if σ(s)∈{1, s}

su(1, 1) if σ(s)=1−s2.
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Fig. 1: The operators Am, A+
m, am, a+

m and Um

relating the functions Ψl,m.

Proof. In the case σ(s) ∈ {1, s} the operator Rm

is a constant operator, namely, Rm = α. Since
α < 0, the operators P+ =

√
−1/α a+

m, P− =√
−1/α am and I form a basis of Lm such that

[P+, P−] = −I [I, P±] = 0

that is, Lm is isomorphic to the Heisenberg-Weyl
algebra h(2).
If σ(s) = 1 − s2 then K+ = a+

m, K− = am and
K0 = Rm form a basis of Lm such that

[K+,K−] = −2K0 [K0,K±] = ±K±.

The operator am can be regarded as an annihila-
tion operator, and a+

m as a creation operator.

4 Coherent states
Let σ(s)∈ {1, s, 1−s2}, and let m ∈ N be a fixed
natural number. The functions |0〉, |1〉, |2〉, · · · ,
where

|n〉 = Ψm+n,m (29)

satisfy the relations

am|n〉 =
√

en eiγ(en−en−1)|n− 1〉

a+
m|n〉 = √

en+1 e−iγ(en+1−en)|n + 1〉

(Hm − λm)|n〉 = en|n〉

(30)

where

en = λm+n − λm

=

{
−αn if σ(s) ∈ {1, s}

n(n + 2m− α− 1) if σ(s) = 1− s2.
(31)

By using the confluent hypergeometric function

0F1(c;z)=1+
1
c

z

1!
+

1
c(c+1)

z2

2!
+

1
c(c+1)(c+2)

z3

3!
+· · ·

(32)
and the modified Bessel function

Kν(z) =
π

2
I−ν(z)− Iν(z)

sin (νπ)
(33)

where

Iν(z) =
∞∑

n=0

(
1
2z

)ν+2n

n! Γ(ν + n + 1)
(34)

we prove (following [3]) that { |z, γ〉 | z ∈ C},
where

|z, γ〉 =
∞∑

n=0

zn e−iγen

√
εn

|n〉 (35)

and

εn =
{

1 if n = 0
e1e2...en if n > 0

(36)

is a system of coherent states continuous in z.

Theorem 2.
a) If σ(s) ∈ {1, s} then { |z, γ〉 | z ∈ C}, where

|z, γ〉 =
∞∑

n=0

zn e−iγen

√
εn

|n〉 =
∞∑

n=0

zn e−iγen√
n! (−α)n

|n〉

(37)
is a system of coherent states in H such that

〈z, γ|z, γ〉 = e−
|z|2
α am|z, γ〉 = z|z, γ〉

(38)
and

−1
πα

∫
C

e
|z|2
α d(Re z) d(Im z)|z, γ〉〈z, γ| = I. (39)

b) If σ(s) = 1− s2 then { |z, γ〉 | z ∈ C}, where

|z, γ〉 =
∑∞

n=0
zn e−iγen√

εn
|n〉

=
√

Γ(2m− α)
∑∞

n=0
zn e−iγen√

n! Γ(n+2m−α)
|n〉
(40)

is a system of coherent states in H such that

〈z, γ|z, γ〉 = 0F1(2m− α; |z|2) (41)

am|z, γ〉 = z|z, γ〉 (42)

4

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp342-347)



and ∫
C

dµ(z) |z, γ〉〈z, γ| = I (43)

where

dµ(z) =
2r2m−α

πΓ(2m− α)
Kα+1

2
−m(2r) dr dθ (44)

and z = reiθ.

Proof. a) By denoting t = − r2

α and using the
integration by parts we get

−1
πα

∫
Cd(Re z) d(Im z)|z,γ〉〈z,γ|

= −1
πα

∑
n,n′ e−iγ(en−en′ )×

×
(∫∞

0 e
r2

α
rn+n′+1√

n! n′! (−α)n+n′
dr

∫ 2π
0 ei(n−n′)θdθ

)
|n〉〈n′|

= −2
α

∑
n

(∫∞
0 e

r2

α
1
n!

(
r2

−α

)n
r dr

)
|n〉〈n|

=
∑

n

(∫∞
0e−t tn

n! dt
)
|n〉〈n|=

∑
n |n〉〈n| = I.

b) Denoting dµ = µ(r) dr dθ we get∫
C dµ(z) |z, γ〉〈z, γ|

=
∑∞

n=0
2πΓ(2m−α)

n! Γ(n+2m−α)

(∫∞
0 r2nµ(r) dr

)
|n〉〈n|

and hence, we must have the relation (Mellin
transformation)

2πΓ(2m−α)
∫ ∞

0
r2nµ(r) dr=Γ(n+1) Γ(n+2m−α).

(45)
The formula [4]∫ ∞

0
2xη+ξKη−ξ(2

√
x) xn−1dx=Γ(2η + n) Γ(2ξ + n)

for x = r2, η = 1
2 , ξ = m− α

2 becomes

4
∫ ∞

0
r2nKα+1

2
−m(2r) r2m−αdr=Γ(n+1)Γ(n+2m−α).

(46)
The relations (45) and (46) lead to (44).

If we consider the ‘number’ operator [2, 8]

N : H −→ H N |n〉 = n|n〉 (47)

that is,

N =
∞∑

n=0

n |n〉〈n| (48)

then the operator H = Hm − λm can be written
as

H =
∑∞

n=0 en|n〉〈n|

=

{
−αN if σ(s) ∈ {1, s}

N(N + 2m− α− 1) if σ(s) = 1− s2.

The operators am and a⊥m, where [8]

a⊥m =
N

H
a+

m =

{ − 1
αa+

m if σ(s)∈{1, s}
1

N+2m−α−1a+
m if σ(s)=1−s2.

satisfy the relations

[am, a⊥m]=I [N, a⊥m]=a⊥m [N, am]=−am.

Therefore, we can consider the non-unitary dis-
placement operator [8]

D(z) = exp(z a⊥m − z am)

= exp
(
−1

2 |z|
2
)

exp(z a⊥m) exp(−z am)

and

|z, γ〉 = D(z) |0〉 for any z ∈ C. (49)

Since the Hermitian operators

X =
1√
2
(a+

m + am) P =
i√
2
(a+

m − am) (50)

satisfy the commutation relation

[X, P ] = i[am, a+
m] (51)

and |z, γ〉 are eigenstates of am, the coherent
states |z, γ〉 minimize the uncertainty relation [8]

(∆X)2(∆P )2 ≥ 1
4
〈i[X, P ]〉2. (52)

The presence of the phase factor in definition
of |z, γ〉 leads to the temporal stability of these
coherent states

e−itH |z, γ〉 = |z, γ + t〉. (53)
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5 Concluding remarks
The associated hypergeometric-type functions can
be studied together in a unified formalism, and are
directly related to the bound-state eigenfunctions
of some important Schrödinger equations (Pöschl-
Teller, Morse, Scarf, etc.). The raising/lowering
operators, the creation/annihilation operators and
the systems of coherent states used in quantum
mechanics correspond to some operators and sys-
tems of functions from the theory of orthogonal
polynomials and associated special functions.

It is useful to obtain fundamental versions
(occurring at the level of associated special
functions) for some methods and formulae from
quantum mechanics because in this way one can
extend results known in particular cases to other
quantum systems. A large number of formulae
occurring in various applications of quantum
mechanics follow from a very small number of
fundamental mathematical results.
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