
A cognitive model based on representations that are spatial functions 
 

JANET AISBETT and GREG GIBBON 
School of Design, Communication and Information Technology 

The University of Newcastle 
University Drive, Callaghan NSW 2308 

AUSTRALIA  
 

 
 

Abstract: - This paper outlines a cognitive model in which internal representations are spatial functions, and in 
which the associated process model is governed by distance in psychological space. Motivation for the model 
comes from the role of similarity judgements in human reasoning, and the apparent ability of humans to create 
task-dependent features about the concepts used in reasoning. Motivation also comes from the promise that 
neuroimages might be interpretable in terms of the conceptual tasks in which the person was engaged at the 
time of imaging. The creation of task-dependent features to aid problem solving is demonstrated in a 
categorisation task.  
 
Key-Words: - cognitive model, cognitive representation, cortical maps, categorisation, classification 
 

1   Introduction 
Lists of numbers or alphanumeric labels are used in 
many disciplines to represent instances of concepts. 
For example, commerce uses alphanumeric fields in 
relational tables to describe employees, products and 
the like, science uses numeric vectors to describe 
anything from specimens to experimental conditions 
to emotional states of mind, and so on. In 
psychology, cognitive and perceptual modellers 
routinely use vectors to represent external stimuli 
and to model the internal representations of these 
stimuli. In Artificial Intelligence, attribute-value 
descriptions of things are routinely used in machine 
learning, as are predicates in logic-based AI.  

The distributed representations found in artificial 
neural systems use vectors for input/output, and the 
representations may be thought of a list of weights. 
However, the representations are more flexible in 
that there is not a fixed mapping between weights 
and characteristics of the things being represented. 
Such models are traditionally classed as biological 
models, although they are very simplistic models of 
biological neural systems in terms of both their 
structures and their interaction mechanisms.  

Neural population modelling takes a higher level 
approach to neural modelling, in attempting to 
explain the synchronised activity of hundreds, 
thousands or tens of thousands of neurons. The 
aggregated activity can be used to explain 
phenomena seen in neural images. The need to look 
at aggregated activity to explain even simple 
perceptual responses has been long recognized (eg.  

[9]). Patterns of electromagnetic and chemical 
activity captured in neuroimages such as Fig. 1a are 
starting to be interpreted in terms of the stimulus 
presented to the person at the time their brain is 
imaged [16]. At this stage the interpretations are 
crude, but as neuroimaging techniques become more 
sophisticated this area of research is expected to 
become a key to understanding cognition [13]. 

This begs the question of whether information 
that is conventionally represented in alphanumeric 
form might be better represented by images similar 
to those that might be captured in the higher 
resolution, more targeted, neuroimaging of the 
future. This question is behind our research 
program. Our long term goal is to determine whether 
the use of non-pictorial images, such as illustrated in 
Fig 1b, to represent abstract and concrete concepts 
might enable automated problem solving approaches 
which better mimic human approaches. 

In previous work, we have developed a formal 
cognitive model which can be applied when mental 
representations are modelled using these type of 
images [2, 5]; and we have applied the model to 
simulate results of psychological experiments into 
recognition and categorisation (classification) tasks 
[5, 6]. Given the current embryonic state of 
neuroimaging, we have also explored how to 
simulate the representation of abstract and concrete 
concepts using analogical but non-pictorial images. 
This has involved experiments with human subjects 
[4] as well as theory and simulations [5, 6]. 
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Fig. 1. (a) fMRI image [16].  (b) Possible use of 
continuous spatial functions to represent examples of 
concepts, with values on subsets of the spatial set being 
related to values of sub-concepts. 

 
 
In the present paper, Section 2 looks at why a 

new cognitive modelling approach might be useful, 
Section 3 provides a fresh look at our model and 
Section 4 applies it to show how task-specific 
features can be created when solving a simple 
problem (in this case, categorisation). 

 
 
2 A solution to problems with current 
representational paradigms 

The dominant symbolic and neural 
representational paradigms in AI were criticized by 
Gärdenfors [9] for their limited ability to represent 
similarity of concepts, which he claimed was 
fundamental to human reasoning. Similarity, and the 
related construct of distance, fit naturally with 
vector representations. 

In such representations, the vector components 
have a distinguished role, in that they are 
indecomposable, unlike attributes formed from sets 
of components (such as colour constituents of hue, 
intensity and saturation). However, the nature of the 
dimensions, attributes and features that are used to 
describe concepts is itself open to debate. Are we 
born with a set of atomic features (hue, saturation, 
length, and so on) from which all other features are 
built?  

Braisby and Franks [8] and others have 
presented cases for the existence of atomic features, 

arguing that observed plasticity of features results 
from new groupings or subdivisions of groupings of 
features, not from the creation of atomic-level 
features. Vector representations fit naturally with the 
assumption of atomic features, as do symbolic 
representations. Distributed ANN representations 
are more accommodating of plasticity, but in the end 
assume a finite number of nodes, analogous to 
vector representations. 

Arguments against the existence of atomic 
features include the ability to learn new categories 
of things, and the experimentally observed 
interaction between cognition and perception [14]. 

The spatial functions described in the next 
section provide a representational form that caters 
for both similarity and does not need to assume 
atomic features.  Clearly the notion of magnitude 
must be represented by such functions.  We employ 
what we have called generalised thermometer 
coding [6] to do this naturally. Conventional 
thermometer (analog) coding would represent the 
magnitudes 1 and 2 on three binary nodes, say, as 
shown respectively in the left and right sets of 3 
circles in Fig 2, using a more redundant and robust 
representation than the more-familiar place based 
coding. Thermometer coding can be generalised 
using a class of continuous functions  

 
S(X) →   [0, 1]  (1) 

 
where X might be any continuous connected subset 
of ℜn, n > 1.  There must be a mapping q from the 
positive reals into members of the class such that a < 
b implies q(a)(x) < q(b)(x) for all x ∈ X. 
Representations of two values using bars is 
illustrated in the middle of Fig. 2, and using the 
spread of Gaussians at the bottom of Fig. 2.  
 

 

 
 
Fig 2. Three different ways of representing a smaller 
thing (on the left) and a larger one (on the right). 

 
 

feel 

colour shape 
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3 A representation based on spatial 
maps 

This section sets out the main structures in the 
model. These are developed in [5], and are 
illustrated in Section 4. 

 
3.1 Representations 
Cognitive representations of stimuli, memories and 
so on are members of a family F of (piecewise) 
differentiable functions  
 

  f: X → (ℜ ∪ ∞)n  (2) 

 

where ℜ denotes the reals, X is a connected 
bounded subset of ℜ2, the point at infinity ∞ 
represents "not applicable", and n is the maximum 
number of components from which an object or 
concept may be cognitively assembled. The point at 
infinity can be thought of as white noise, and n as a 
type of capacity (or number of layers) in working 
memory. The use of layers enables binding of 
subconcepts. Following researchers such as 
Freeman [9] at a finer temporal granularity than we 
are considering here, cortical representations might 
be waves. If so, layers could be implemented in the 
brain through frequency or phase. In a computer 
implementation, layers can be thought of as colour 
layers.  

We assume that external stimuli are represented 
by functions in F which result from sensory 
interpretation of those stimuli which is not 
considered in our cognitive modelling.  Likewise, to 
accommodate human linguistic and motor 
responses, parts of X must be able to be “read off” 
by other subsystems which are not modelled. 

 
3.2 Dimensions 
Regions in X play the role of dimensions in 
conventional vector-based modelling. To support 
this, we allow representations to include some 
restrictions of members of F to connected subsets of 
X. That is, valid representations are functions 

 
     f*: X* → (ℜ ∪ ∞)n                                 (3) 

 
where X* is a connected subset of X and for some f 
in F, f|X* = f*. Fig 3 illustrates.  

 
3.3 Similarity 
Similarity is an inverse function of a metric defined 
via pointwise differences. Specifically, given two 
instances of concepts represented by functions f and 

g in F, then the difference between the concepts on 
the region A ⊂ X is defined to be  
 

dA(f, g) = ∫A|f(x) – g(x)| dx  (4) 
 
The region of integration A in Eqn. 4 is introduced 
to cater for the fact that human judgement of the 
similarity of concepts is a contextual judgement. 
The region A defines the context.  Similarity is 
treated as the negative exponential of distance (Eqn. 
5) following psychological convention. 

 

 
 
Fig 3. The restriction to a subdomain X* (shown here 
encircled) of a concept represented as a spatial function 
is a subconcept that is also represented by a spatial 
function 
 

S(f, g; X*) = exp( -∫X*|f(x) – g(x)| dx)      (5) 
 

As pointed out in [3], such a formulation of 
similarity and dimensions provides a possible 
explanation of an experimentally observed 
phenomenon.  In judging similarity of sets of objects 
that vary on more than one dimension (e.g. colour 
and size) people appear in some experiments to use 
a city block metric in which  d = Σdi  where di is the 
metric on dimension i. However, they sometimes 
appear to use Euclidean or higher order Minkowski 
d = {Σdi

r}1/r, r > 2 [12, 15]. This can be explained in 
our framework by the fact that when “dimensions” 
are defined on disjoint regions our metric is a city 
block. Yet when “dimensions” are defined as 
overlapping regions, the integral over the union of 
the regions is less than the sum of the integrals over 
the two regions, and so the metric appears to be a 
higher order Minkowski 

 
3.4 Attention and working memory 
Attention and working memory are elusive aspects 
of cognition, which nevertheless appear in most 

X*
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comprehensive cognitive models including SOAR 
[11] and ACT-R [7]. The problem with explaining 
attention is how to do so without invoking a “higher 
authority” or master controller whose attention then 
has to be explained. At the same time, the existence 
of a separate working memory has been questioned, 
with the suggestion that working memory may be 
just memories activated in situ. 

A notional layer of working memory is initially 
formed about the representation of a new stimulus, 
by identifying some memories activated by the 
stimulus as “belonging” to this stimulus. (This might 
occur in the brain via memories having the same 
frequency or phase as the stimulus representation.) 
So working memory consists of activated memories 
labelled somehow to refer to a stimulus presentation. 
The magnitude of activation is influenced by the 
similarity of a memory to the current stimulus in the 
area of attention on that layer. Activation subsides 
over time, but later stimuli may activate new 
memories on this layer. Conservation of energy is 
assumed, and a layer has a limited life, as working 
memory has finite capacity. 

Attention on each layer varies, and is determined 
by the difference between the initial stimulus 
representation and the total activation over all the 
other layers active at that time.  This effectively 
means that attention is directed to where the 
currently active memories are most different to the 
new stimulus. For example if, at the time a stimulus 
represented by f is received, there are two working 
memory layers with activation functions g1 and g2, 
then attention will be directed to regions in X where 
|f – (g1 + g2)/2| is greater than some cut-off. With 
longer time available to examine a stimulus, the cut-
off is lowered and regions in X with successively 
lower values of |f – (g1 + g2)/2| are included in the 
processing.  
 
3.5 Reasoning  

The reasoning process is detailed in [5]. While 
the full process is tedious to expound, the overall 
pattern is simple and repetitive: 

 
…input ⇒  attention setting and memorisation ⇒ 
activation of memories onto layers of working 
memory ⇒  decay of activity ⇒  input… 

 
The input is an externally-received stimulus, or, 

in the absence or repression of such stimuli, the 
result of combining contents of working memory. 
Output is assumed to be obtained as total activation 
on certain regions of X (e.g. a region representing a 
linguistic symbol). 

3.6 Memorisation 
Memories are represented as parts of an input 
function. Formally, a memory of a stimulus f is ∪i 
f|Ai where ∪i Ai is the area in attention at the time of 
memorization. With longer study time, the area of 
attention is increased and more of the stimulus 
representation is memorised. 
 
 
4   Example 
Categorisation (classification) is one of the most 
fundamental steps in problem solving. This section 
illustrates the model’s performance on a simulated 
categorisation task in order to demonstrate the 
model and how regions on the image plane act as 
task-dependent dimensions.  

Fig. 4a depicts simulated input from five stimuli 
in each of two categories. To make the example 
easier to follow, we assume the stimuli are presented 
to the system with sufficient study time for the entire 
stimulus to be remembered, including the relevant 
category name. Like exemplar-based [12] or most 
nearest-neighbour models of categorisation, 
therefore, we assume here that every example of the 
category is memorized in full.  

The normalised sum fi of the activated memories 
is depicted in Fig. 4b for each of the two categories. 
These are assumed to be activated on different 
layers in working memory, following a verbal or 
visual naming of the category prior to each test 
stimulus. On presentation of any test stimulus, 
memories are activated on each layer according to 
their similarity to the test stimulus in the context of 
the area in attention on that layer. When a memory 
is activated, activation in the region corresponding 
to the relevant category name increases. The test 
stimulus is categorised according to the category 
name region with highest total activation. 

Prior to the test stimulus being presented, the 
two layers containing the activated training 
memories are assumed to be the only contents of 
working memory. The fact that in practice recent 
test stimuli may affect classification performance is 
recognized but rarely taken into account in 
explaining human categorisation results. (Our model 
can simulate the retention of memories of recent test 
stimuli but we have not yet analysed the results 
against human experimental data.)  

Suppose that category 1 had been activated first, 
with no other active layers; attention on the category 
1 layer is therefore determined by the modulus 
function | f1|.  Activation of category 2 then creates 
attention on the new layer which is the difference |f2 
- f1| . The attention functions are shown in Fig. 4c, 
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and the most prominent “dimensions” or features are 
isolated in Fig. 4d. The regions shown in black 
provide the similarity context for the categorisation 
task.  If a longer task time were simulated, the dark 
grey areas in Fig. 4c might also be inspected. 
   

 
 (a) Training stimulus representations 
 

 
 (c) Attention functions corresponding to layers in (b) 
 

                     
 
 (d) Attention areas derived from (c) 

                       
 
Fig. 4. Stimuli are memorised as in (a), and the 
categories are recalled as in (b), to form layers 1 and 2 of 
working memory.  Attention is determined by the 
functions (c), which are formed from the activations 
functions in (b). The areas in black in (c) are in attention, 
as shown in (d). If time to make a response was longer, 
then grey areas in (c) might also receive attention.  See 
text. 

 
Six test stimuli have representations as shown in the 
first row of Fig 5a. The second row in Fig 5 depicts 
the restrictions of each of the test stimuli to the area 
of attention on the category 1 layer, defined by the 
black regions in the image to the left in Fig 4d. The 
third row in Fig 5 depicts the restrictions of each of 
the test stimuli to the area of attention on the 
category 2 layer, defined by the black regions in the 
image to the right in Fig 4d. Activation of the 
memories on a layer is proportional to the similarity 
of their restriction to the areas shown in Fig 4d to 
the restrictions of the test stimulus depicted in Fig 5.  
Comparisons of the total activation on the region of 

each category name (that is, the total activation of 
memories stored with that category name) resulting 
from presentation of a stimulus shows that the first 3 
test stimuli in the top row of Fig. 5 will be classified 
category 1, and the remainder  category 2. Note that 
stimulus 4 appears in the training sets of both 
categories and is classified as category 2. This is not 
surprising as this category has two members which 
are more similar to other category 1 members than is 
stimulus 4. 
 

 
Fig. 5. Top row: representations of 6 test stimuli. Middle 
row: the restriction of the representations to the area in 
attention on layer 1. Bottom row: the restriction of the 
representations to the area in attention on layer 2.  The 
5th and 6th stimuli restrict to the zero function in the 
attention area on layer 2.  
 
As a final example of feature formation, consider the 
two training sets depicted in Fig. 6a. In category 2 
there are now “whiskers” of various lengths attached 
to each of the stimulus representations. These are 
clearly seen in the accumulated memories depicted 
in Fig. 6b.  The difference function that will direct 
attention on layer 2 when the accumulated 
representations of both sets are in working memory 
is depicted in Fig 6c. This time, the “whiskers” are 
the prominent region, and these form the 
distinguishing feature. 
 
 
5 Conclusion 
We have used a categorisation (classification) task 
to demonstrate a cognitive model in which 
representations are essentially real-valued functions 
on a subset of the plane. The ability to create task 
dependent features based on connected subsets of 
the spatial domain contrasts with the finite number 
of fixed dimensions available in conventional 
alphanumeric vector modelling.  

The description of the example given in Section 
4 is reminiscent of image classification, although the 
metric on our space of functions is not one of the 
usual image metrics, and classification does not 
proceed by the typical nearest-neighbour, maximum 
likelihood or distance-to-mean classification 
approaches. Instead the model uses constructs of 
working memory and attention.  Moreover, the 
spatial functions we consider are not pictorial, 

category 1 training   category 2 training  

(b) recalled 
memories 

 
 
 

          category 1 
 
 
   

  category 2 
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although they will be analogical, in the sense 
suggested by generalised thermometer coding. 

Spatial representations are well established in 
contexts such as image and geographical systems, 
and a cognitive process model based on working 
memory and attention is fairly standard. However, a 
computational model which uses spatial 
representations is new. The potential link to cortical 
imaging and population coding is also interesting.  A 
computational model based on spatial 
representations is likely to be a useful cognitive 
modelling tool. 

In the introduction, we said we were aiming to 
investigate if such a model could provide more 
human-like reasoning. This requires us to try to 
model experimental results from human decision-
making. In current work we are gathering more data 
from psychological experiments into two-choice 
decisions (such as recognition, or 2-class 
categorisations). Because human performance in 
such tasks is very dependent on the time available, 
such data forces us to look closely at the dynamics 
of the representations. We hope to show how 
cognitive models based on spatial functions can 
explain further experimental phenomena.   
 

 
(a) Training stimulus representations; note “whiskers” 
beneath category 2 members eg as circled. 

 

 
(c) Attention mage on category 2 layer. The “whiskers” 
are the most prominent feature. 
 
Fig. 6. Creation of a new task dependent feature. 
 

 References 
[1] Abbott, L. and Dayan, P. The effect of 

correlated variability on the accuracy of a 
population code, Neural Computation, 1999 Vol. 
11, No. 1, pp. 91-101. 

[2] Aisbett, J. and Gibbon G. A general formulation 
of conceptual spaces as a meso-level 
representation J. Art. Intelligence, 2001, Vol. 
133,  pp. 189 – 232. 

[3] Aisbett J. and Gibbon G. Memory and Learning 
in a Meso Level Reasoning System. Ninth 
International Conference on Neural Information 
Processing, Singapore Nov 2002. pp. 101-105. 

[4] Aisbett J. and Gibbon G.  Preserving similarity 
in representation: a scheme based on images 
Proc. Joint Int. Conf. on Cog. Sci. Sydney 2003. 

[5] Aisbett J. and Gibbon G.  A cognitive model in 
which representations are images, Cognitive 
Systems Research 2005, Vol.6, No.4, pp.333-363 

[6] Aisbett, J. Townsend J. and Gibbon G. 
Modelling perceptual discrimination. 8th 
International Work-Conference on Artificial 
Neural Networks 2005 pp. 646-653. 

[7] Anderson, J R, Bothell, Byrne, M. D., and 
Lebiere, C. An integrated theory of the mind. 
Psychological Review 2002. 

[8] Braisby, N. and Franks, B.. A creationist myth: 
Pragmatic combination not feature creation, Beh. 
and Brain Sciences,  2001 Vol. 21, No 1, p19. 

[9] Freeman, W. Qualitative Overview of 
Population Neurodynamics Neural modeling and 
Neural Networks, 1994, 185-215. 

[10] Gardenfors, P. Conceptual Spaces:The 
Geometry of Thought  MIT Press 2000. 

[11] Laird, J., Newell, A. and Rosenbloom, P. Soar: 
An architecture for general intelligence. 
Artificial Intelligence, 1987 Vol. 33, pp. 1-64. 

[12] Nosofsky, R Attention, similarity and the 
identification-categorization relationship. Journal 
of Experimental Psychology: General, 1986, 
Vol.115, No.1, pp.39-57. 

[13] Poldrack, R. A. Imaging Brain Plasticity: 
Conceptual and Methodological Issues–– A 
Theoretical Review, NeuroImage, 2000, Vol.12, 
No. 1, pp.1-13. 

[14] Schyns P., Goldstone, R. and Thibaut, J-P. The 
development of features in object concepts Beh. 
and Brain Science, 1998, Vol. 21, pp. 1-54. 

[15] Shepard R. Metric structures in ordinal data. J. 
Math. Psychology, 1966, Vol. 3, pp. 287-315. 

[16] Wang, X., Hutchinson, R. and Mitchell, T. 
Training fMRI Classifiers to Detect Cognitive 
States across Multiple Human Subjects Neural 
Information Processing Systems 2003. 

category 1 training    category 2 training  

 
 

 
 
 

category 1 
 
 
   
  

 category 2 
 
 

b) recalled memories 
 

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp460-465)


