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Abstract: - In this paper we analyze the value of European options on a dividend-paying asset from a point of 
view different to that of Black-Scholes. The method that we propose uses partial differential equations and the 
Mellin transform, and can be applied to financial practices. Our starting point will be the partial differential 
equation, which gives us the value of the option.  We then solve the problem using integral transform theory, 
thus obtaining an explicit integral solution different from the one given by Black-Scholes-Merton. Lastly, we use 
various practical examples to show that our formula and the classical one are in perfect agreement. 
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1   Introduction 
 
One of the fundamental elements of a modern 
financial market is the options contract.  Options are 
not the result of a recent financial innovation; in fact, 
they were conceived thousands of years ago. We 
know that the Phoenicians, the Greeks, and the 
Romans negotiated contracts with options clauses on 
the merchandise carried aboard their vessels. 
However, some market historians credit the famous 
Greek philosopher, mathematician, and astronomer 
Thales, who made a considerable profit investing in 
options on the olive harvest and the use of oil mills, 
with the discovery. The first loosely organized 
options market appeared in Holland in the 17th 
century, when options on tulip bulbs began trading.  
In England, in the early 18th century, the stocks of the 
main commercial companies began trading. In the fall 
of 1720, the sharp drop in the prices of the “South 
Sea Company”, motivated in part by speculation on 
the stock options of the company, produced such a 
scandal that the options market was declared illegal. 
This prohibition was in force until the start of the 
20th century, although options trading continued 
clandestinely. 
  
In the United Status, options on the purchase of 
stocks began trading in the 18th century in 
unregulated markets, but its spectacular growth did 
not begin until April 26, 1973, with the opening of 
the CBOE (Chicago Board Options Exchange), the 

first organized financial derivatives market in the 
world.  
 
A derivative is a financial product based on an asset. 
The owner of an option has the right (but not the 
obligation) to buy or sell a certain asset on a future 
date at a fixed price. One of the simplest types of 
options gives the right to buy an asset, known as a 
call option. It is important to keep in mind that the 
owner of a call option may choose not to exercise it, 
thus gaining no profit from it. So, in exercising the 
option, the owner benefits from a favorable 
movement in the price of the asset, and if he does not, 
the losses are limited.  On the other hand, the seller of 
the call option is obligated with fulfilling the 
conditions of the contract should the owner wish to 
exercise the option 
 
In 1973, the publication of the famous work by Black 
and Scholes revolutionized the world’s financial 
markets. By considering a simple model for the price 
of a financial resource, they obtained an analytical 
formula for the value of a European call option on a 
stock. This type of option is an example of a financial 
derivative which gives the holder the right, but not 
the obligation, to buy a unit of an asset at a fixed 
moment (the expiration date) at a fixed price K 
(option striking price). If we use C and S to denote 
the call premium and the stock price at expiration, 
respectively, the option holder will receive 

( )max 0,C S K= − . Black and Scholes assumed that 
there was no arbitrage in the market and obtained the 

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp373-378)



one price for the option that would let a bank take 
that money and, using a hedging strategy, guarantee 
payment of the option. 
  
Different models for pricing the value of options on 
specific underlying assets have been studied, many 
based on Black-Scholes’ groundbreaking work. It can 
be said that the topic of asset valuation has become a 
priority at many financial research centers. 
 
The method we propose for pricing European options 
on dividend-paying stocks uses partial differential 
equations and the Mellin transform.  This method can 
be applied to other types of options and has given 
satisfactory results (see [3]). 
 
Recently, [6] also used the Mellin transform to price 
European options on non dividend-paying stocks. 
However, the explicit expression obtained depends on 
the inverse Mellin transform which, as noted in [6, 
Remark, p. 32], cannot always be expressed with a 
closed formula and would then require a numerical 
estimate. 
 
Additionally, the solution obtained, which we 
reproduce here [6, (12) p. 31]: 

( ) * ( )( )1( , ) ( )
2

i p t TC S t S f i e dα τ τα τ τ
π

∞ − + −

−∞
= +∫

, 
poses some practical difficulties with the term 

( )f iα τ+ , that is, with the final condition of the 
Cauchy problem that gives the value of the option, 
since it may not be Mellin transformable.  
 
In this paper we show that a closed formula different 
from that given in [6, (12) p. 31] can be obtained and 
that it has practical applications. Our formula is also 
valid for European options on dividend-paying 
stocks. 
 
To this end, in section 2 we will give a brief exposé 
on the Mellin transform, presenting the necessary 
formulas and results for understanding section 3, 
where we proceed to price European options and 
obtain a closed formula. We finish in section 4 by 
implementing two small routines with the 
Mathematica symbolic calculation software, and with 
various practical examples which show that the 
results given by our formula and that of Black-
Scholes coincide perfectly. 
 
2   Integral Transform Theory 
 
In this section we give an introduction to the Mellin 
transform ([4], [9]). This transform is named after the 

Finn Robert Hjalmar Mellin (1854 - 1933), and the 
Mellin transform of  ( , )C S t  is defined by ([9, p. 
273]): 
 

{ } 1

0

ˆ ( , ) ( , ) : , ( , ) (Re 0)pC p t M C S t S p S C S t dS p
∞ −= = >∫

(2.1) 
 
the inverse of which is given by: 
 

{ }1 1 ˆ( , ) ( , ) : , ( , )
2

c i p

c i
C S t M C p t p S C p t S dp

iπ

+ ∞− −

− ∞
= = ∫ , (2.2) 

 
Additionally, the Mellin convolution [9, p.276] is 
denoted by * and is: 
 

( )
0

1
* ( ) ( ) .

x
f g x f g y dy

y y

∞

=
⎛ ⎞
⎜ ⎟
⎝ ⎠∫    (2.3) 

 
As with other integral transforms, the Melllin 
transform has some useful properties with respect to 
the derivative [4, (1954), (11) p. 307]: 
 

{ }
2

2( , ); , ( , ); ,
d

M S C S t S p p M C S t S p
dS

= ⋅
⎧ ⎫⎛ ⎞
⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 (2.4) 

 

{ } { }( , ); , ( , ); ,
d

M S C S t S p p M C S t S p
dS

= − ⋅⎛ ⎞
⎜ ⎟
⎝ ⎠

 (2.5) 

 
3. European Option Pricing 
 
3.1. CALL and PUT Pricing 
 
Black-Scholes-Merton ([1], [8]) showed that, under 
certain market assumptions, the value of a European 
call option ( , )C C S t≡  satisfies the following 
Cauchy problem ([5], [10], [11]): 
 

2

2 2

2

( )

1
( ) 0, 0 , 0 ,

2

( , ) ( ) ( ) ,

(0, ) 0,

( , ) , when ,d T t

C C C
S r d S r C S t T

t S S

C S T f S S K

C t

C S t S e S

σ

+

− −

∂ ∂ ∂
+ + − − = < < ∞ ≤ <

∂ ∂ ∂

= = −

=

→ ∞

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩
(3.1) 
 
where the value of the option depends on the price of 
the underlying asset S , the volatility σ , the strike 
price K , the expiration date T , the dividends d  
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which are paid out continuously, and the constant 
interest rate r . 
 
For the case of a European put option the Cauchy 
problem is as follows: 
 

2

2 2

2

( )

1
( ) 0, 0 , 0 ,

2

( , ) ( ) ( ) ,

(0, ) ,

( , ) 0, when ,

r T t

P P P
S r d S r C S t T

t S S

P S T f S K S

P t K e

P S t S

σ

+

− −

∂ ∂ ∂
+ + − − = < < ∞ ≤ <

∂ ∂ ∂

= = −

=

→ → ∞

⎧
⎪
⎪⎪
⎨
⎪
⎪
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(3.2) 
 
First we shall price the call option. The process for 
the put option is similar, the difference being in the 
final condition of the Cauchy problem. 
  
We want to solve (3.1) using (2.4)-(2.5).  For this we 
need to carry out some simple operations so that the 
PDE in (3.1) takes the form: 
 

2

2

2

1
( , ) ( , )

2

1
( , ) ( , ) 0

2

C S t S C S t
t S

r d S C S t r C S t
S

σ

σ

∂ ∂
+ +

∂ ∂

∂
− − − =

∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
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 (3.3) 

 
Next, we apply the Mellin transform to the PDE in 
(3.3) and, using (2.4)-(2.5), we get 
 

2 2 21 1ˆ ˆ( , ) ( , ) 0
2 2

C p t p r d p r C p t
t

σ σ
∂

+ − − − − =
∂

⎛ ⎛ ⎞ ⎞
⎜ ⎜ ⎟ ⎟
⎝ ⎝ ⎠ ⎠

,

 (3.4) 

with the final condition 
ˆˆ ( , ) ( )C p T f p= . 

 
The differential equation in (3.4) is of first order and 
easily solved: 
 

( )( )

( )

2 2 2

2 2 2

2

1 1
( )

2 2

1 2
( ) ( )

2

ˆˆ ( , ) ( )

ˆ ( )

p r d p r T t

r
T t p

C p t f p e

f p e

σ σ

σ α α
σ

− − − − −

− + − −

= ⋅

= ⋅

, (3.5) 

where 
2 2

1

2

d r
α

σ σ
= + − . 

 
Applying the inverse Mellin transform to (3.5) we get 
 

( )2 2 2

2

1 2
( ) ( )

1 2( , ) ( ) * ; ,
r

T t p

C S t f S M e p S
σ α α

σ
− + − −

−=
⎧ ⎫
⎨ ⎬
⎩ ⎭
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( )( )

( ) 1 2( ) * ; ,
T t p
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σ α

β
− +
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⎨ ⎬
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, (3.6) 

where 2 2

2

1 2

2

r
β σ α

σ
= − +⎛ ⎞

⎜ ⎟
⎝ ⎠

. 

 
Moreover, using [4, 7.2 (1), p.344] and making the 
variable substitution p xα+ =  we have 
 

2 2 2 21 1
( )( ) ( )( )

1 12 2; , ; ,
T t p T t p

M e p S S M e x S
σ α σ α

α
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Then, from (3.6), (3.7), and the expression for the 
Mellin convolution (2.3) we obtain: 
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1 2
( ) ( )

1 2( , ) ( ) * ; ,
r

T t p

C S t f S M e p S
σ α α

σ
− + − −

−=
⎧ ⎫
⎨ ⎬
⎩ ⎭
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Lastly, if we impose the final condition  

( ) ( )f S S K += − , the value of the option ( , )C S t  is 
given by: 

( )

2

2
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( ) 2 ( )1 1
( , ) / ( )

2 ( )

S

y

T t T t

K
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where 
2 2

1

2

d r
α

σ σ
= + −  and 2 2

2

1 2

2

r
β σ α

σ
= − +⎛ ⎞
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⎝ ⎠

. 

 
Thus we obtain an integral expression for the pricing 
of a European call option. 
  
Note that by changing the final condition we easily 
obtain the value of a put option:  

( )

2

2

ln

( ) 2 ( )

0

1 1
( , ) / ( )

2 ( )

S

y
KT t T tP S t e S y e K y dy
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∫

where 
2 2

1

2

d r
α

σ σ
= + −  and 2 2

2

1 2

2
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β σ α

σ
= − +⎛ ⎞
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⎝ ⎠

. 

 
3.2. Comparison with Black-Scholes and Binomial 
models. Examples. 
 

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp373-378)



In this section we provide some examples so as to 
compare the results obtained with our formula with 
those given by the known Black-Scholes-Merton 
formula ([1], [8]) and Binomial Option Pricing Model 
[2]. 
 
For this, we shall introduce in Mathematica the two 
formulas. 
 
The classic Black-Scholes formula: 
 
d1@S_,K_,σ_,r_,d_,t_,T_D=

1

σ è!!!!!!!!!T−t
 
i
k
jjLog@SêKD+

i
k
jjr−d+

σ2

2
y
{
zz HT−tLy

{
zz;

d2@S_,K_,σ_,r_,d_,t_,T_D=

d1@S,K,σ,r,d,t,TD−σ 
è!!!!!!!!!T−t;

Norma@z_?NumberQD=N@0.5+0.5Erf@zêSqrt@2DDD; 
BSCall@S_,K_,σ_,r_,d_,t_,T_D:=

S −d HT−tL Norma@d1@S,K,σ,r,d,t,TDD−

K −r HT−tL Norma@d2@S,K,σ,r,d,t,TDD  
 
And the one obtained in this paper. 
 
α@S_,K_,σ_,r_,d_,t_,T_D=J d

σ2
+

1
2

−
r
σ2
N;

β@S_,K_,σ_,r_,d_,t_,T_D=

−
1
2

 σ2 Jα@S,K,σ,r,d,t,TD2+
2 r
σ2
N;

 
BSCallMellin@S_,K_,σ_,r_,d_,t_,T_D:=

1

σ 
è!!!!!!!!!!!!!!!!!!!!2 πHT−tL

 β@S,K,σ,r,d,t,TD HT−tL 

·
K

∞

Hy−KL HSêyLα@S,K,σ,r,d,t,TD 
−
HLog@SêyDL2
2 σ2 HT−tL  

1
y

 y
 

 
Next we provide some examples.  In the first we will 
verify that the Put-Call parity holds. 
 
Example 1. Put-call parity. 
 
Let us consider an option on a non dividend-paying 
asset with the following values: 30S = €, 29K = €, 

5r = % annual continuous, 0.25σ =  annual, and a 
time until option expiration of 4 months. 
 
a) Calculate the price of the option if it is a 

European call. 

BSCall@30,29,0.25,0.05,0,0,4ê12D

2.52515  
 
BSCallMellin@30,29,0.25,0.05,0,0,4ê12D

2.52515  
 
We see that our result coincides with that given 
by the Black-Scholes formula. 
  

b) Calculate the price of the option if it is a 
European put. 
BSPut@30,29,0.25,0.05,0,0,4ê12D

1.04582  
 
BSPutMellin@30,29,0.25,0.05,0,0,4ê12D

1.04582  
 
We see that the formulas for the put option also 
match. 

 
c) Verify that the put-call parity is satisfied. 
 

8S=30,K=29,r=0.05,T=4ê12<;

c= BSCallMellin@30,29,0.25,0.05,0,0,4ê12D;

p= BSPutMellin@30,29,0.25,0.05,0,0,4ê12D;  
 
p+S

31.0458 
 
c+K −rT

31.0458  
 
As expected, the put-call parity is also satisfied. 

 
 
Example 2. European options on dividend-paying 
assets. 
 
Calculate the value of a European call option with 
three months to go until expiration, on the “Standard 
and Poor’s 500” index (S&P 500), with a current 
price of $250, a strike price of $250, a continuously 
compounded interest rate of 2.07 , a volatility of 
18% , and a constant annual index dividend estimated 
at 3%  
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So the values are as follows: 250S = , 250K = , 
2.07r = , 0.18σ = , 0.03d = . 

 
BSCall@250,250,0.18,0.0207,0.03,0,3ê12D

8.63068

BSCallMellin@250,250,0.18,0.0207,0.03,0,3ê12D

8.63068  
 
We see that they also coincide. 
 
Example 3. Comparison with Binomial Option 
Pricing Model. 
 
In this example we will consider an option on a non 
dividend-paying asset with the following values: 

50=S €, 45=K €, 5r = % annual continuous, 
0.25σ =  annual, and a time until option expiration 

of 4 months. 
 
In Mathematica the binomial option pricing formula 
can be given as: 
 
BinomialEuropeanOption@s_,σ_,T_,r_,

exercise_Function,n_D:=

Module@8
u= N@Exp@Sqrt@TênD∗σDD,
d= N@Exp@−Sqrt@TênD∗σDD,
R= N@Exp@r∗TênDD<,

p=HR−dLêHR∗Hu−dLL;
q=Hu−RLêHR∗Hu−dLL;
Sum@exercise@s∗û j∗d̂ Hn−jLD∗

Binomial@n,jD∗p̂ j∗q̂ Hn−jL,8j,0,n<DD
BinomialEuropeanCall@s_,x_,σ_,T_,r_,n_D:=

BinomialEuropeanCall@s,x,σ,T,r,nD=

BinomialEuropeanOption@s,σ,T,r,
Max@#1−x,0D&,nD;  

 
We can now show that this binomial pricing formula 
converges to our formula: 
 

ListPlot@
Table@
8n,BSCallMellin@50,45,0.25,0.05,0,0,

4ê12D−BinomialEuropeanCall@50,45,
0.25,4ê12,0.05,nD<,8n,10,500,10<D,

PlotJoined→True,PlotRange→All,
AxesLabel→8n,""<D  

 

100 200 300 400 500
n

-0.015

-0.01

-0.005

0.005

0.01

0.015

 
 
4   Conclusion 
 
In this paper we have proposed a different method for 
pricing European options. Furthermore, this method 
can be applied to other financial derivatives. We have 
obtained a closed integral formula for pricing 
European options on dividend-paying or non paying 
assets. We have done this by using the theories of 
partial differential equations and integral transforms. 
Unlike other recent results, our method is consistent 
and is applicable to financial practices. Lastly, we 
have used several examples to show that the results 
coincide perfectly with those given by the Black-
Scholes-Merton formula. 
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