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Abstract: - This paper deals with the inverse problem of the calculus of variations. A new method for reach a 
variational formulation of non-potent operators is introduced. A variational formulation to complete Navier-
Stokes equations has been developed. 
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1   Introduction 
 
Variational principles are mainly used today in the 
following contexts: 
a) For obtaining the differential equations for a 
physical problem, together with corresponding 
boundary conditions; 
b) For the study of symmetry and conservation laws 
under infinitesimal transformation groups; 
c) For providing that a boundary problem is solvable 
(i.e., for showing the existence of solutions for 
nonlinear equations); 
d) For obtaining solutions of linear and nonlinear 
problems using direct methods of variational 
calculus. 
     The use of variational principles in cases “c” or  
“d” above, leads to the so called “inverse problem of 
the calculus of variation”, i. e. the existence and 
formulation of functional F[u], whose variation, 
being vanished, supplies the boundary problem in 
consideration. 
     The pioneer work of Vainberg [1] (whose first 
results were obtained in 1954), based on concepts of 
functional analysis, remained inaccessible to many 
applied mathematicians and engineers, until its 
importance was recognized by Enzo Tonti [2, 3]. 
     Tonti, in his turn, changed the Vaimberg’s work in 
a practical device, by developing a procedure to 
derive many operational formulae that make it 
possible to determine whether a given operator is 
potential or not. 
     According to [4] and [5], it is not always simple to 
give a variational formulation to a mathematical 

problem. In particular, in the absence of symmetry of 
the operator governing the problem, with respect to  a 
suitable bilinear form, it is impossible to construct a 
relevant variational formulation. This difficulty has 
prompted, already in the early 1950’s, the study of 
symmetrisation methods.  
     In [6] the authors make a very didactical 
classification of the methods of symmetrisation in 
four main classes, as summarized bellow:  
a) Method of additional variables or dual principles; 
b) Method of integrating operator; 
c) Method of transformation of variables; and, 
d) Method of modifications. 
     The essence of the method of additional variables 
or dual principles is that one or more variables and 
equations are introduced into the problem, thus 
extending the corresponding function space in such a 
way that the original operator will be part of a potent 
operator. The most important problem of this method 
is the meaningless of the new variables and 
equations. This method was first proposed, for linear 
operators, by Morse and Feshbach [7], under the 
name of “adjoint operator method”. This method was 
extended to the general, nonlinear case by Finlayson 
[8]. 
     The method of integrating operator consists in 
considering, instead of the operator governing the 
problem, a composite operator created in a special 
way. 
     The method of transformation of variables means 
that we change the independent variable into an 
operator, more precisely, instead of the original 
operator of the given problem, we consider a 
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composite operator. The best known example of this 
method is the variational principle for the Maxwell’s 
equations in vacuum. These equations are non-potent 
in their original variables ( , )E B , but introducing the 

scalar and the vector potential ( , )Aφ , the resulting 
wave equations are potent. This special example 
motivates that the introduced new variables are called 
potentials [9]. 
     The method of modifications is, sometimes, 
referred as quasi-variational principle, or restricted 
variational principle, and it can be subdivided into 
two approaches: modified operators and modified 
function space. Initially one, the operator is modified 
in such a way that the transformed operator will be 
potent. The domain of the modified operator is the 
same as the original one. Variational potentials exist 
only for the modified operator, not for the original 
one. Variational principles coming from this method 
are usually believed to be valid in a more general 
sense than they really are. For instance, the resulting 
Euler-Lagrange equations are transformed to get back 
the original operator. 
     The method of modified function spaces means 
that the domain of the original operator is restricted, 
so that the originally non-potent operator becomes 
potent on the restricted domain. Thus the operator is 
modified by restricting its domain instead of its 
shape. 
     We shall say that the classification above is only 
didactical, and a mixture of these methods can be 
done in order to derive a variational formulation of an 
operator. A detailed discussion on classification of  
symmetrisation methods can be find in [8]. 
     In this paper we present a new method to derive a 
variational formulation of linear and nonlinear 
operators, which is based in splitting an non-potent 
operator into two operators: a symmetric one and a 
skew-symmetric one. With respect to the symmetric 
operator we follow the procedure established by 
Tonti [2, 3]. For the skew-symmetric operator, we 
define a bilinear form, according with the operator 
will be symmetric. 
     In section 2, we will introduce the method. In 
section 3 will be presented an example of a linear 
operator. In section 4, will be presented an 
application of the method for a nonlinear operator. 
The chosen example was the complete Navier-Stokes 
equations. Finally, to finish this paper, section 5 we 
will discuss the remarkable aspects of the results of 
the application of the method. 
 

2   Method of Splitting 
Let ( )T ⋅  be an operator, which is non-potent. 
According to this method, if ( )T ⋅  has an adjoint, 

( )T ⋅ , it is possible to decompose the operator 
( )T ⋅ into two operators: a symmetric one, ( )ST ⋅ , and 

other skew-symmetric ( )SKEWT ⋅ , such as 
 
( ) ( ) ( )S SKEWT T T⋅ = ⋅ + ⋅    (1) 

 
     The symmetric and skew-symmetric parts can be 
reached following the procedure bellow 
 

( ) ( ) ( )
2S

T T
T

⋅ + ⋅
⋅ =     (2) 

 

( ) ( ) ( )
2SKEW

T T
T

⋅ − ⋅
⋅ =     (3) 

 
     The next step is to define the bilinear forms for the 
symmetric and skew-symmetric part of the operator. 
The bilinear form for the symmetric operator can be 
the usual inner product, while for the skew-
symmetric operator; it should be defined according to 
the nature of the operator. Finally supposing the 
operator T acting on u, ( )T u , we can write the 
functional [ ]T u , as follows 
 

( ) ( )
1 1

0 0

[ ] , ,S SKEWS SKEW
T u T u u d T u u dλ λ λ λ= +∫ ∫
       (4) 
 
 
3   The RLC Serial Circuit 
 
This is the case of a linear operator: 
 

1( ) tt tT q Lq Rq q
C

= + +
 

 
extracted from a RLC serial circuit, where L is the 
inductance of the circuit, C the capacitance, R the 
resistance, q the charge flowing through the circuit 
and qt , qtt are the first and second, respectively, 
derivatives of the charge with respect to the time. 
This operator can be rewritten as  
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( ) ( ) ( )

( )

1

1                      

tt t

tt t

T q LD RD q T
C

LD RD
C

⎛ ⎞= + + ∴ ⋅ =⎜ ⎟
⎝ ⎠

⎛ ⎞= + + ⋅⎜ ⎟
⎝ ⎠

 (5) 

 
     The adjoint of (5) is 
 

( ) ( )1
tt tT LD RD

C
⎛ ⎞⋅ = − + ⋅⎜ ⎟
⎝ ⎠

   (6) 

 
     According to (2) and (3), we can write 
 

( ) ( )1
S ttT LD

C
⎛ ⎞⋅ = + ⋅⎜ ⎟
⎝ ⎠  

and 
 

( ) ( )SKEW tT RD⋅ = ⋅     (7) 
 
     Now, let us define bilinear forms 

, ,

, ,

S S
t

SKEW SKEW
t

u v u vdt v u

dvu v u dt v u
dt

= ⋅ =

= ⋅ = −

∫

∫
  (8) 

 
     The functional for ( )T q  can be written as  
 

( )

( )

1

0

1

0

[ ] ,

            ,

S S

SKEW SKEW

T q T q q d

T q q d

λ λ

λ λ

= +

+

∫

∫
  (9) 

 
From (8), (9) becomes 
 

2 2 21 1 1[ ]
2 2t t

t t

T q Lq q dt Rq dt
C

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠∫ ∫  (10) 

 
 
4   The Navier-Stokes Equations 
 
In order to exemplify this method we have chosen the 
Navier-Stokes equations, because, according to [8] 
and [10] there isn’t a potential, and consequently a 
variational formulation for them.  
     Let us consider a bidimensional compressible 
flowing off, isothermal with viscosity ( , )x yµ µ= , 
and viscosity coefficient  

2
3

ξ λ µ= +
 

with velocity ( , )u u v=  , pressure P and specific 
mass ρ, described by the following equations: 
 

( ) ( ) ( )

( ) ( ) ( )

0

0

xx yy xx xy x x y

xx yy xy yy y x y

u u u v P u u u v

v v u v P v u v v

µ ξ ρ

µ ξ ρ

⎧− + − + + + + =
⎪⎪
⎨
⎪− + − + + + + =⎪⎩
       (11) 
 
     Equations (11) can be joined at an unique 
equation, and then it’s possible to extract an operator, 
since now on, called ( )T ⋅ , as follows 
 

( ) ( ) ( )2( )T u u u P u uµ ξ ρ= −∇ −∇ ∇⋅ +∇ + ∇ ⋅ , 

       (12) 
 
where 

u
u

v
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

   ;   
x

y

∂⎡ ⎤
⎢ ⎥∂⎢ ⎥∇ =
∂⎢ ⎥

⎢ ⎥∂⎣ ⎦

   ;   x y

x y

u u
u

v v
⎡ ⎤

∇ = ⎢ ⎥
⎣ ⎦

   ; 

x

y

P
P

P
⎡ ⎤

∇ = ⎢ ⎥
⎣ ⎦

   ;   x
uu
x
∂

=
∂

   ;   x
PP
x

∂
=
∂

 

 
     Now, consider the following two bilinear forms: 
 
a) Symmetric bilinear form  
 

( )1 1
1 1 1 2 2

2 2

,
a b

a b a b dxdy
a b

σ
Ω

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∫   (13) 

 
b) Skew-symmetric bilinear form 
 

( )1 1
2 1 2 2 1

2 2

,
SKEW SYMMETRIC

a b
a b a b dxdy

a b
σ

Ω−

⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∫

       (14) 
 
     The operator ( )T ⋅  is a nonlinear operator. By 
inspection, it can be seen that it has a symmetric part 

( )ST ⋅ . 
 

( ) ( ) ( )2
ST u u u Pµ ξ= −∇ −∇ ∇⋅ +∇   (15) 
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and a skew-symmetric part ( )SKEWT ⋅ : 
 

( ) ( )SKEWT u u uρ= ∇ ⋅     (16) 

 
 
Thus,  
 
( ) ( ) ( )S SKEWT T T⋅ = ⋅ + ⋅    (17) 

 
     Now, let us make the variational formulation for 
the symmetric operator ( )ST ⋅  in (15)  
 

[ ] ( )

( ) ( )( )

( ) ( )

1

1
0

1
2

1
0

2

,

,

1 ,
2

S ST u T u d u

u u P d u

u u u u P u

σ λ λ

σ µλ ξ λ λ

µ ξ

= =

= −∇ −∇ ∇⋅ +∇ =

= −∇ ⋅ −∇ ∇⋅ + ∇ ⋅ =

∫

∫  

( ) ( )

( ) ( )

( ) ( )

21 1, ,
2 2
1 1, ,
2 2
1 1, ,
2 2

u u u u P u

u u u u P u

u u u u P u

µ ξ

µ ξ

µ ξ

= −∇ + −∇ ∇⋅ + ∇ ⋅ =

= −∇⋅∇ + −∇ ∇⋅ + ∇ ⋅ =

= ∇ ∇ + ∇⋅ ∇ ⋅ + ∇ ⋅

 
Then 
 

[ ] ( ) ( )( )2 21
2ST u u u d P udµ ξ

Ω Ω

= ∇ + ∇⋅ Ω+ ∇ ⋅ Ω∫ ∫
       (18) 
 
     The variational formulation for the skew-
symmetric operator (16), can be reached as follows 
 

[ ] ( )

( ) ( )( )

( ) ( )( )

1

2
0

1

2
0

2

,

    ,

1    ,
3

SKEW SKEWT u T u d u

u u d u

u u u

σ λ λ

σ ρ λ λ λ

σ ρ

= =

= ∇ ⋅ =

= ∇ ⋅

∫

∫  

 
According to (14.0),  
 

[ ]

( )
( )

2

2

1 ,
3

1              ,
3

x y
SKEW

x y

x y

x y

u u u u
T u

v v v v

u u u v u
vv u v v

σ ρ

ρ
σ

ρ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤+ ⎡ ⎤⎢ ⎥= =⎢ ⎥⎢ ⎥+ ⎣ ⎦⎣ ⎦

 

2 21              
3 x y x yu uv u v v u v vuρ ⎡ ⎤= + − −⎣ ⎦  

 
Integrating by parts, we have 
 

[ ] 1 2 2
3
1             3 3
3

SKEW x x y y

x y

T u u uv u uv v vu v vu

u uv v vu

ρ

ρ

⎡ ⎤= + − − =⎣ ⎦

⎡ ⎤= −⎣ ⎦

 

 
Thus 

[ ] ( )SKEW x yT u uv u v dxdyρ
Ω

= −∫   (19) 

 
     In varying (19), we should return to (16). Thus, let 

[ ], 0SKEWT u uδ δ = . Then let us consider 

h
u

k
δ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, then 

 

[ ] ( ){
( ) }

,

                   

SKEW x y x

x y y

T u u v u v h uvh

u u v k uvk dxdy

δ δ ρ
Ω

= − +

+ − −

∫
 

 
Integrating by parts, we obtain 
 

[ ] ( ) ( ){
( ) ( ) }

,

                    

SKEW x y x x

x y y y

T u u v u v h u v uv h

u u v k u v uv k dxdy

δ δ ρ
Ω

= − − + +

+ − + + =

∫
 

    ( ) ( ){ }y x x yvv uv h uu u v k dxdyρ
Ω

= − + + + =∫  

    

,

,

x y

x y

x y

x y

uu u v h
dxdy

uv vv k

u u u h
dxdy

v v v k

ρ

ρ

Ω

Ω

⎧ ⎫+⎡ ⎤ ⎡ ⎤⎪ ⎪= =⎨ ⎬⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭
⎧ ⎫+⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪= ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎣ ⎦⎩ ⎭

∫

∫
 

 
    ( ) ( )0 0u u udxdy u uρ δ ρ

Ω

= ∇ ⋅ ⋅ = ∴ ∇ ⋅ =∫  (20) 
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     We can observe that (20) matches with (16), what 
assure us that (19) is correct. Thus we can join (18) 
and (19) in a unique functional. 
 

[ ]

( )
1 1

1 2

1 1, ,
2 2

           , ,

T u u u u u

P u u u u

σ µ σ ξ

σ σ ρ

= ∇ ∇ + ∇⋅ ∇ +

+ ∇ − ⋅∇
 (21) 

 
 
5   Conclusions 
 
A new method for given a variational formulation to 
non-potential operators was presented. As an example 
of the application of this method, it was given a 
variational formulation to complete Navier-Stokes 
equations. Which, until now, was believed not have 
one, since it is a non-potent operator. 
     The necessary condition, for applying this method, 
is the existence of an adjoint for the operator to be 
decomposed. 
     For each operator in study, it will be necessary to 
define a skew-symmetric bilinear form, which, with 
respect to itself, becomes the skew symmetric part of 
the operator, symmetric. 
     It is important to note that, in terms of energy, the 
symmetric part of the operator corresponds to the 
conservative part of the system, while the skew-
symmetric corresponds to dissipation. 
     Observing (10.0), it can be seen that the functional 
[ ]T q  can be divided into a part that deals with the 

electric and magnetic energies and a second part 
related to the power dissipation. 
     Interpreting (18.0), it can be seen that in the 
functional [ ]ST u  can be found two terms, one of 
them responsible for mechanical work while the other 
due to P. In [ ]SKEWT u  is found the work due to the 
vorticity. 
     An overall view of the method shows that it has an 
straight forward application, and permit us to deal 
with a large class of problems, reaching important 
results, allowing us to give an physical meaning to 
them. 
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