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Abstract: The systematic study of data to obtain specific properties from long (or short) data series is a main objective. The use 
of rational models and related numerical methods can be useful to predict the behaviour of relevant economic variables. 
This paper is a continuation of González-Gil [16] which is concerned with illustrating the application of several numerical 
methods, among them, the corner method, epsilon-algorithm, rs-algorithm and qd-algorithm to time series modelling. These 
methods which are closely related to theoretical research in Padé Approximation have been proposed to identify some type of 
rational structure associated to economic data in different contexts (financial, marketing, farming…). Now, we present the study 
of the statistical significance for the four mentioned methods. Two examples will be considered, namely, a simulated ARMA 
model and a Transfer Function Model for the sales series M given in Box-Jenkins [7] and Tsay [27]. 
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1 Introduction 
Over the last two decades, several research activities 
have helped to obtain new procedures and techniques to 
characterize dynamic relations associated to data series. 
In the context of time series analysis, several authors 
(Lii [18], Claverie et al. [9], Berlinet-Francq [5]…) have 
considered the rational theory of series in econometric 
modelling. From this perspective, several techniques 
closely related to Padé Approximation (PA) have been 
proposed to identify possible rational structures 
associated to chronological data. As the covariance 
structure of underlying processes exhibits features 
connected with the order of models, it is possible to use 
numerical algorithms (corner method, epsilon-
algorithm, rs-algorithm and qd-algorithm) linked with 
Hankel and determinants to estimate the unknown orders 
from available observations.  
The contribution of this paper is the study of the 
statistical significance of two of these numerical 
methods, that is, the rs-algorithm and qd-algorithm as a 
continuation of the work made in González-Gil [16]. 
Consideration is given to both the univariate and the 
multivariate multivariate cases. 
In the univariate case, the identification of ARMA 
models has been extensively considered in the last two 
decades (Beguin et al [2], Mareschal-Mélard [21], 
Claverie et al [9], Berlinet-Francq [5]). 
As for the multivariate case, some results have been 
given to identify a VARMA model (Tiao-Tsay [26], 
Reinsel [24], Lütkepohl-Poskitt [20], Pestano-González 
[22], Berlinet-Francq [6]...) and, as a particular case, a 
Transfer-Function (TF) model (Liu-Hanssens [19], Lii 
[18], González et al [15]...).  

Next, we show the theoretic characterization of these 
techniques in a TF model with one output and one or 
multiple inputs in a causal way. 
The empirical work is carried out in the context of the 
Box-Jenkins´s [7] guidelines. Both proposals are 
illustrated in both univariate and multivariate cases, 
considering a simulated ARMA model and a Transfer-
Function Model for the sales series M given in Box-
Jenkins [7] and Tsay [27]. 

2   The Univariate Case: Some Methods 
of Rational Characterization in ARMA 
Models  
Let us consider a minimal stationary and invertible 
Autoregressive Moving Average (ARMA) model of 
order (p,q) defined as 

Zt   ,a)L(X)L( tqtp ∈∀Θ=Φ  
where L is the backward-shift operator, that is,  
LmXt=Xt-m,∀t∈Z, Φp(L), Θq(L) are polynomials of 
degree p and q respectively and { },...2,1,0t;a t ±±=  is a 
sequence of independently and identically distributed 
random variables with mean zero and variance σ2

a. It is 
assumed that Φp(L) and Θq(L) have no common factors. 
Various methods related to PA have been proposed to 
identify the orders p and q. For instance, the C-Table 
method (Baker-Graves-Morris [1]) from its properties it 
can be obtained the corner method in econometric 
literature (Beguin et al [2]). Many later papers have also 
considered the corner method in ARMA modelling, 
trying to get to the maximum of their power (Mareschal-
Mélard [21]). Also, Beguin et al [2] studied the 
statistical significance of the C-table. Later, Tsay [27] 

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp379-385)



 

and Lii [18] proposed to consider an estimator of the 
asymptotic variance in terms of the partial derivatives of 
the entries in the C-table. 
The relation of this method with the Hankel 
determinants and PA has stimulated the study of other 
algorithms in ARMA models. For instance, we can 
mention the epsilon-algorithm (Wynn [28]), proposed by 
Berlinet [3]. Its relation with PA and the corner method 
can be seen in Brezinski [8] and the characterization for 
an ARMA process in Berlinet-Francq [5]. They 
proposed statistical properties of the entries in the 
epsilon-algorithm, based on the same statistical and 
assumptions than Beguin et al [2]. 
We can also refer to the rs-algorithm (Pye-Atchison 
[23]), proposed by Gray et al. [17] for ARMA models 
and whose relation with PA can be seen in Brezinski [8]. 
This algorithm which is linked to determinants of the 
Hankel matrices associated with the sequence of 
autocorrelations of Xt, { }∞∞−ρ≡ρ i , that is, 

j
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where )(Cij1 ρ  is the determinant of the Hankel matrix 
associated with Lρ, and it is deduced that 
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The study of the statistical significance of the algorithm 
is given in González [11] computing the values of the t-
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the initial values. 
With regard to the qd-algorithm (Rutishaüser [25]), it 
has been considered by Berlinet [3] to study the partial 
autocorrelation function in an ARMA model and by 
González [11] and González and Gil [16] to model 
identification. This algorithm is defined as 
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Its relation with the PA is not direct (Brezinski [8]) and 
it can be proved that 
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In order to study the statistical significance for the 
elements of the qd-algorithm, the same statistical and 
similar notations are used. Partial derivatives are 
computed following the next iterative procedure 
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For k>0: 
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These methods can be used to find a parsimonious 
approximation or reduce possible competing models to 
only a few for further testing. Other techniques can be 
found, for example, in Berlinet-Francq [5].  
This proposal is illustrated following the model  

Zt    ,a5.0aX7.0X 1tt1tt ∈∀+=− −−  simulated by 
Berlinet-Francq [5], where at is a white noise process 
with media zero and variance 1. Initial values were taken 
equal to zero; 200 values were generated but only the 
last 100 values were considered.  
Using the rs-algorithm, the obtained results are  
 

Critical Value Accepted (p,q) models 
1.28 
1.64 
1.96 
2.33 
2.58 
2.81 
3.09 
3.29 
3.72 
4.26 

(1,5) (2,1) 
(1,1) 
(1,1) 
(1,1) 
(1,1) 
(1,1) 
(1,1) 
(1,1) 
(1,1) 
(1,1) 

 
Using the qd-algorithm, results are given below: 
 

Critical Value Accepted (p,q) 
Models 

1.28 
1.64 
1.96 
2.33 
2.58 
2.81 
3.09 
3.29 
3.72 
4.26 

(1,1) 
(1,1) 
(1,1) 
(1,1) 

(1,1) (0,2) 
(1,1) (0,2) 
(1,1) (0,2) 
(1,1) (0,2) 
(1,1) (0,2) 
(1,1) (0,2) 

 
Obtained results suggest that both methods are efficient 
alternatives to reproduce the simulated model. 

3   The Multivariate Case: Some Methods 
of Rational Characterization in Causal 
TF Models 
Let us consider a VARMA (p,q) process defined as  

Φp(L) Zt=Θq(L)ut 

where now Φp(L) and Θq(L) are matrix polynomials of 
dimension n and degrees p and q respectively, Zt is a 
multiple process Zt and ut a vector of independent white 
noise processes. A structure of particular interest when  
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If φ is invertible, Yt is given by 
Zt   ,NX)L()L(Y tt

1
t ∈∀+ψφ−= −  

In this expression, which is called the TF model, the 
output Yt is a function of the contemporary and delayed 
effects of the input variable Xt. It is assumed a one-way 
causal relation Xt→Yt and the presence of a disturbance 
series described as Nt=φ-1(L)θ(L)at. 
Here we refer to TF models with one output Yt≡yt and 
one or multiple inputs Xt≡(xit)i=1,...,n, that is,  
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response of yt to xit and at is a white noise process. 
The Box-Jenkins´s guideline deals with modelling this 
type of input-output dynamic relations. It is based on the 
specification of the dynamic structures in a TF model 
from the sample available information. 
In order to identify the values of bi, si and ri and obtain a 
satisfactory response of yt for each input, several 
proposals have been considered, just based on 
algorithms related to the PA. Padé table computation 
offers consistent initial values, without previous 
identification of the noise structure. 
We can write the following compact relation 

   Lv)L(v      ;Nx)L(vy
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where vi(L) is the Impulse Response Function (IRF), 
which transforms xit into yt. 
First, the weights vij for each input and the matrix 
covariance are computed using Ordinary Least Squares 
or maximising the Likelihood Function in accordance 
with the following expression 

∑∑
= =
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ijt
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The lag structure for xit is approximated by choosing a 
finite number ki of terms. *

tN  is the reestimated noise 
term. 
Next, we define the sequence of estimated relative 
weights Njiji )ˆ(ˆ ∈η=η  for xit as 
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that verifies the following linear difference equation of 
order ri and rank bi+si 
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This expression just constitutes a characterization for a 
TF model.  
Several methods have been proposed for obtaining a 
identifiable TF model. Among them, the corner method 
(Liu-Hanssens [19], Tsay [27], Lii [18], Claverie et al 
[9]…), provides a generalisation of the one given in the 
univariate case. For this method, the study of the 
statistical significance can be also found in Tsay [27]. 
In the context of a TF model with multiple inputs, the 
epsilon-algorithm has been proposed by González-Cano 
[12,13] and González et al [14,15]...) The study of the 
statistical significance can be seen in Berlinet-Francq [5] 
and González et al [15].  
We can also bring out the rs-algorithm, which has been 
proposed by González [11] and González-Gil [16] for a 
TF model in accordance with the following result. 
Theorem 1.- v̂ i(L) has a rational representation with 
orders (bi,si,ri) if the following conditions are verified: 
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Displaying these values in a double-entry table, tabular 
structures for each input xit can be obtained (González-
Gil [16]).  
In certain cases, some transformations in the sequence of 
relative weights could be necessary to avoid 
computational instability. 
In the same way, the qd-algorithm has been proposed by 
González [11] and González-Gil [16] to identify a TF 
model in accordance with the following characterization. 
Theorem 2.- If v̂ i(L) has a rational representation with 
orders (bi,si,ri), then one of the following statements is 
verified: 
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Displaying the entries in a double-entry table, tabular 
structures can be obtained for each input xit (González-
Gil [16]). Comments made in section 2 are again valid 
here to study the statistical significance. 
To illustrate these methods a simulated model with two 
inputs (Liu-Hanssens [19]) is considered, 

100,..,1t,Nx
L24.0L1

L3L5.1x)L4L2(y tt22

32

t1
43

t =+
+−
+

++=

(1-1.3L+0.4L2)Nt=at,   at˜N(0,2) 
(1-1.4L+0.48L2)x1t=ct,   ct˜N(0,1) 

(1-0.7L)x2t=dt,   dt˜N(0,2) 

where at is independent of ct and dt, and ct and dt are 
contemporaneously correlated with correlation 0.7. 
The identification pattern is clearly b1=3, s1=1, r1=0, 
b2=2, s2=1 and r2=2. 
Previous results for the corner method and the epsilon 
algorithm can be seen in Liu-Hanssens [19] and 
González et al [15] respectively. They don’t differ 
substantially from the next ones given for the rs-
algorithm and the qd-algorithm. 
The IRF is now computed by using the Cochrane-Orcutt 
iterative method, one of the three ones considered in 
González et al [15]. The other methods and Least 
Ordinary Squares estimation provide similar results. 

 
Table r 

Statistical significance for the {(-1)jη1j} 
 1 2 3 4 5 6 
0 -.132    
1 .241 -.006   
2 -.176 -.036 .002  
3 1.566 -.052 .009 -.001 
4 2.523 -1.170 .503 -.020 .001
5 1.265 -.090 .001 .000 .000 .000
6 1.050 .004 -.002 .000 .000 .000
7 .795 .062 -.001 .000 .000
8 -.142 -.046 .006 .000 
9 .626 -.020 .000  
10 -.123 -.003   
11 .081    
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Table r 
Statistical significance for the {(-1)jη2j} 
 1 2 3 4 5 6 
0 -.215      
1 .212 -.010     
2 1.839 -.050 .006    
3 -6.227 1.316 -.029 .006   
4 5.428 -.643 -.010 .000 .000  
5 -3.890 .124 -.013 .000 .000 .000 
6 2.378 .082 .002 .000 .000 .000 
7 -1.562 -.093 .001 .000 .000  
8 1.480 -.167 .001 .000   
9 -.583 -.072 .000    
10 .897 -.056     
11 -.271      

 
Therefore, among different alternatives it can be 
obtained the identification pattern of the model.  
 

Table q 
Statistical significance for {(-1)jη1j} 

 1 2 3 4 5 6 
η0=-.051 
0 -.138      
1 -.170 .068     
2 -.180 .254 .027    
3 1.205 -.211 -.238 -.031   
4 1.035 -.832 .421 .216 .093  
5 .723 -.203 -.347 .295 .302 -.276 
6 .572 .046 -.055 .019 .004 -.027 
7 -.146 -.443 .049 -.019 -.025  
8 -.148 .148 -.475 -.044   
9 -.126 .141 .024    
10 -.078 -.125     
11 -.084      

 
Table q 

Statistical significance for {(-1)jη2j} 
 1 2 3 4 5 6 
η0=-.031 
0 -.128     
1 .222 -.215    
2 -1.580 .327 -.061   
3 -3.380 -.594 .262 .087  
4 -2.632 -.265 .067 -.089 1.302 
5 -1.690 .534 -.164 .135 .075 -.005
6 -1.081 -.064 .084 .090 -.058 -.006
7 -.884 .331 -.046 -.058 .045 
8 -.473 .349 .124 .051  
9 -.412 1.112 .171   
10 -.232 -.123    
11 -.058     

 
The orders for the first input can be adequately 
identified. For the second one, a possible pattern is b2=2, 
s2=0, r2=1. 

4   An Application 
Now we consider empirical results for a set of sales 
leading indicator data identified as series M in Box-

Jenkins [7] and also studied in Tsay [27]. Data set are 
150 pair of observations (xt, yt). 
The FT model proposed by Box-Jenkins [7] is 

tt

3

t a)L54.01(x
L72.01

L82.4035.0y −+∆
−

+=∆  

tt b)L32.01(x −=∆  
In this specification ∆=1-L is the operator that allow to 
obtain the rates of data variation and at and bt are white 
noise processes. Therefore, b=3, s=0 and r=1, which 
confirms the model proposed by Box-Jenkins [7]. Tsay 
[27] carried out further examination studying the 
statistical significance of the corner table. 
Starting from Berlinet-Francq [5] and Tsay [27], 
González et al [15] showed the statistical significance of 
null entries in the epsilon table to confirm the adequacy 
of the identified model. 
In this sense, applying the epsilon-algorithm to the 
sequence (-1)iηi. it can be deduced the following table of 
statistical significance 
 

 0 2 4 6 8 10 12 
0 .105   
1 -.105 -.053   
2 -.211 -.109 .103  
3 10.541 6.419 5.199 4.729 
4 -7.800 -.046 .025 -.010 -.117
5 5.692 .025 .002 .024 -.082 -.066
6 -4.360 -.011 .025 .042 -.032 .032 .058
7 3.130 -.123 -.083 -.032 -.039 .044 .051
8 -2.460 -.017 -.074 .033 .043 .025
9 1.792 .189 .173 .059 .051
10 -1.054 .144 .162 .024 
11 .843 -.086 -.117  
12 -.843 -.206   
13 .422   

 
With these results, the orders for the accepted models 
according to certain critical values are as follows 
 

Critical value Accepted (b,s,r) models 
1.28 
1.64 
1.96 
2.33 
2.58 
2.81 
3.09 
3.29 
3.72 
4.26 

(3,6,0) (3,0,1) 
(3,6,0) (3,0,1) 
(3,5,0) (3,0,1) 
(3,5,0) (3,0,1) 
(3,4,0) (3,0,1) 
(3,4,0) (3,0,1) 
(3,4,0) (3,0,1) 
(3,3,0) (3,0,1) 
(3,3,0) (3,0,1) 
(3,3,0) (3,0,1) 

 
They confirm the model proposed by Box-Jenkins [7] 
and Tsay [27]. Other possible models can be also 
obtained although they are less parsimonious. 
Now, applying the rs-algorithm, next results are 
obtained 
 
 
 

Proceedings of the 8th WSEAS International Conference on APPLIED MATHEMATICS, Tenerife, Spain, December 16-18, 2005 (pp379-385)



 

Table r (Statistical significance) 
 1 2 3 4 5 6 
0 -.208      
1 .122 -.002     
2 .083 .000 -.000    
3 -10.998 .084 -.001 .000   
4 8.169 -.410 .020 .000 .000  
5 -5.533 -.176 .000 .000 .000 .000 
6 4.239 -.177 .002 .000 .000 .000 
7 -2.930 -.137 .001 .000 .000  
8 2.561 -.152 -.000 .000   
9 -1.733 .004 -.000    
10 1.155 .037     
11 -.976      

 
With these results, the orders for the accepted models 
according to certain critical values are as follows: 
 

Critical value Accepted (b,s,r) models 
1.28 
1.64 
1.96 
2.33 
2.58 
2.81 
3.09 
3.29 
3.72 
4.26 

(3,6,0) (3,0,1) 
(3,6,0) (3,0,1) 
(3,5,0) (3,0,1) 
(3,5,0) (3,0,1) 
(3,4,0) (3,0,1) 
(3,4,0) (3,0,1) 
(3,3,0) (3,0,1) 
(3,3,0) (3,0,1) 
(3,3,0) (3,0,1) 
(3,2,0) (3,0,1) 

 
The results obtained with the qd-algorithm are the 
following: 
 

Table q  (Statistical significance) 
 1 2 3 4 5 6 
η0 = -.017 
0 -.089     
1 .090 -.107    
2 -.083 .082 .416   
3 -5.513 -.078 -.048 .078  
4 -3.862 .351 -.197 3.282 -1.223 
5 -2.820 .651 -.191 .164 .352 -.241
6 -2.025 .187 -.143 -.153 .201 -.169
7 -1.601 .594 .152 -.130 .109 
8 -1.209 -.046 .559 -.138  
9 -.811 .016 -.015   
10 -.621 .292    
11 -.452     

 
The selected models are 
 

Critical value Accepted (b,s,r) models 
1.28 
1.64 
1.96 
2.33 
2.58 
2.81 
3.09 
3.29 
3.72 
4.26 

(3,5,0) (3,0,1) 
(3,4,0) (3,0,1) 
(3,4,0), (3,0,1) 
(3,3,0) (3,0,1) 
(3,3,0) (3,0,1) 
(3,3,0) (3,0,1) 
(3,2,0) (3,0,1) 
(3,2,0) (3,0,1) 
(3,2,0) (3,0,1) 
(3,1,0) (3,0,1) 

The comparison among obtained results suggests to 
accept like probable better model the one corresponding 
to the orders (3,0,1). 

5    Conclusions and Open Questions 
This paper highlights the usefulness of several numerical 
methods which are closely related to PA to identify 
some rational structures associated to data series. This is 
illustrated in the context of causal time series models, 
that is, ARMA and TF Models. 
The main contribution of this paper is the study of the 
statistical significance of the rs-algorithm and qd-
algorithm as a continuation of the work made in 
González-Gil [16]. 
Empirical findings points out the role of the statistical 
significance for the numerical values in the mentioned 
algorithms. In general, different possible models will be 
obtained according to certain critical values.  
For future research, the generalisation of the results 
obtained here to VARMA models, in general, is not 
evident. For example, for the corner method, 
consideration has to be given to the rank of matrices and 
non determinants (Pestano-González [22]). Also, the use 
of matrix epsilon-algorithm has only given partial results 
(Francq [10]). The generalisation of the rs-algorithm and 
qd-algorithm has not yet been considered.  
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