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Abstract: A block cipher consists of round transformations. Each round transformation contains a mixing layer
to create diffusion, that is, to have each output bit dependent on all input bits. Such a transformation can also be
described by means of graph theory language. Here we generalize a partial result from our two previous papers.
The main result of this paper claims that for an oriented graphG with n vertices, satisfying for allu, v ∈ V (G)
special conditions, there existsn0 such that for alln > n0 the number of arcse(G) ≥ (n − 1)(k + 1). We also
discuss a relation to the problem of an ideal round transformation.

Key–Words:Graphs with oriented path of length 2, Efficient design of block cipher.

1 Introduction

Conditions to design a good block cipher are still un-
der careful investigation of researchers. They include
security, versatility, hardware, etc. A good reference
can be found in [2]. Any block cipher consists of
transformations commonly called round transforma-
tions. These transformations are obtained by alterna-
tively applying permutations, P-boxes, and substitu-
tions, S-boxes. The role of an S-box is to create con-
fusion, that is, to have the relation between the key and
the cipher text as complex as possible. The role of a P-
box is to create diffusion, that is, to have each output
bit dependent on all input bits. In the ideal case, flip-
ping an input bit should change each output bit with
the probability of one half. A product cipher is a com-
position of round transformations, and is often called
substitution-permutation network (SPN).

A common strategy is to have substitutions carried out
over small disjoint parts of the input, while the P-box
permutation is a single large permutation, so called
global mixing transformation, used to mix these parts
together. In paper [4] we suggest criteria which should
be satisfied by an efficient P-box, and then we study
P-boxes satisfying those criteria. It turns out that it is
very handy to see the mixing transformation as a func-
tion F ∈ Fn, whereFn is the family of all Boolean
functions onZn

2 , that is,F = (f1, f2, ..., fn), where
fi : Zn

2 → Z2, i = 1, ..., n, are called component
functions. For obvious reasons,F has to be a bijec-
tion, and in order not to compromise the key, any lin-
ear combination of component functionsf

′
i s has to be

non-linear1. To be able to define the optimality crite-
rion put on the mixing transformation we introduce a
notion of a matrixΦ associated with the functionF.

Definition 1 Let F = (f1, . . . , fn) ∈ Fn. Then
Φ(F ) will stand for a0− 1 matrixA = (aij) of order
n , whereaij is given by

aij =





1, if there existsx ∈ Zn
2 such that

fj(x⊕ e(i))⊕ fj(x) = 1;
0, otherwise,

(1)

where the symbol⊕ represents the Boolean sum of
two words, ande(i) stands for the word with the
only 1 in the i-th position. Further, we setδ(F ) =∑n

i=1

∑n
j=1 aij .

Clearly, because of the hardware implementation of
F, we would like to minimizeδ(F ). On the other
hand, as the mixing transformation has to guarantee
that each output bit depends on all input bits, it must
be δ(F ) = n2, or, equivalently,Φ(F ) = Jn, where
Jn is the matrix of ordern with all elements equal to
1. One way how to deal with the two contradictory
requirements is to adopt the following strategy. We
seek a functionF ∈ Fn with δ(F ) being as small as
possible butΦ(F ◦ F◦ ...◦ F ) = Jn, That is, in the
first round of the mixing transformationF, the change
of an input bitxi affects only few outputs bits, but the
remaining output bits will be affected in the follow-
ing rounds of the transformation. With respect to time

1Functionf : Zn
2 → Z2 is said to be non-linear if the alge-

braic normal form off contains at least one term of order 2, or
more.
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needed for ciphering the ideal situation occurs if the
required property ofF is obtained after two rounds,
that is, ifΦ(F ◦ F ) = Jn.
The main result of [4] claims that ifF is a bijection
in Fn, n ≥ 64 so that all linear combinations of its
components are non-linear functions, andΦ(F ◦F ) =
Jn, thenδ(F ) ≥ 4n − 4, and by a construction of a
suitable functionF we showed that this bound is best
possible.

2 Problem Formulation
Our solution presented in [4] is the best possible in the
sense of minimum hardware connections for a good
round transformation. Unfortunately, each but one
component functionfi have only three active vari-
ables. To gain better properties, e.g. general nonlin-
earity, we may need more active variables per each
component function. This leads to a generalization of
a problem from graph theory which we used in papers
[7, 4]. In this section we recall some notions and no-
tation from graph theory, and explain the problem we
solve.
Let G be an oriented graph, and(u, v) be an arc ofG.
Then the vertexv is said to be adjacent fromu and a
u is said to be adjacent tov. The number of vertices
adjacent fromv is called the outdegree ofv and is
denoted byod(v), the number of vertices adjacent to
v is called the indegree ofv and is denoted byid(v).
Further, we denote byNod(v) and theNid(v) the set
of vertices ofG that are adjacent fromv and tov,
respectively;N2

id(v) will stand for the set of vertices
of G from whichv can be reached by an oriented path
of length2. Finally, bye(G) we denote the number of
arcs ofG.
In the case thatF is a mixing transformation, each in-
put bit has to affect each output bit. Hence, translated
into terms of the matrixΦ(F ), the mixing transfor-
mationF satisfies the conditionΦ(F ) = Jn, where
Jn is the matrix of ordern with all elements equal to
1. However, as mentioned in Introduction, the imple-
mentation of a functionF with Φ(F ) = Jn would
be very inefficient from the hardware point of view.
Therefore we seek for a functionF ∈ Fn with δ(F )
being small butΦ(F ◦F ) = Jn. Now we are ready to
define the concept of the paper [4].

Definition 2 Ideal non-linear mixing transformation.
LetCn be the set of all functionsF = (f1, f2, . . . , fn)
: Zn

2 → Zn
2 satisfying conditions:

1. F is a bijection;

2. For eachc = (c1, ..., cn) ∈ Zn
2 , c 6= (0, 0, ..., 0),

the function
⊕n

j=1 cjfj is non-linear;

3. Φ(F ◦ F ) = Jn.

We setδn = min{δ(F ) : F ∈ Cn}, and each function
F ∈ Cn with δ(F ) = δn will be called an ideal non-
linear mixing transformation.

Theorem 3 If Φ(F ◦ F ) = Jn then Φ(F ) ¯
Φ(F ) = Jn, where¯ denotes matrix multiplication
with Boolean OR instead of XOR.

We introduce two more notations which will be
frequently used throughout the paper. LetF =
(f1, ..., fn) be an ideal non-linear mixing transforma-
tion, Φ(F ) = A = (a ij). Let R(fi) is the set of all
active variables offi, i.e. the set of all variables which
appear in the algebraic normal form offi. Further, let
Hu,v be a subset of component functions{f1, ..., fn}
so that iff ∈ Hu,v then|R(f)| = k, and bothu, v ∈
R(f).
As A is a 0 − 1 matrix, A can be understood as the
incidence matrix of an oriented graphG on n ver-
tices v1, ..., vn, where an oriented arc(vi, vj) ∈ G
if aij = 1. Clearly, if |R(fj)| = k for a function
fj , 1 ≤ j ≤ n, then the number of1′s in thej-th
column ofA equalsk, that is,id(vj) = k. It is easy to
check that no non-linear function with two active vari-
ables is balanced. Therefore, for each vertexv ∈ G,
we have

id(v) ≥ 3. (2)

Further,|Hu,v| is clearly equal to the number of ver-
tices of indegreek adjacent both fromu, v. In graph
theory language,Hu,v will be the set of such vertices.
By Theorem 3,A ¯ A = Jn is a necessary condition
for F to be an ideal non-linear mixing transformation.
This condition translates into graph theory language
as follows: For any two verticesu, v ∈ G there is an
oriented path of length2 both fromu to v and also
from v to u, that is, N2(v) = V (G) for each ver-
tex v ∈ G. As far as we know, oriented graphs with
this property, having the minimum possible number
of arcs, have not been investigated yet. Results con-
cerned with a similar problem asking for the minimum
number of arcs of an oriented graph of diameter2 can
be found in [3].
From conditions 1 and 2 in Definition 2 it follows, that
eachfj must be at least of order 2, and possesses at
leastk ≥ 3 active variables. If this is the case then
it is possible to have ([4])|Hu,v| ≤ 5. Besides this
key ingredient of the proof, the main strategy in [4]
consists of two steps:

1. Find a graph with minimum arcs, such that for
any vertex, except of one,id(v) ≥ 3, and for any
two verticesu, v ∈ G there is an oriented path of
length2 both fromu to v and also fromv to u,
that is,N2

id(v) = V (G).
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2. Find a functionF satisfying conditions 1 - 3 from
Definition 2 such thatΦ(F ) = A.

This yields for the incidence matrixA of such a graph
the following conditions:

1. Matrix A possesses, except of one column, three
1’s in each column.

2. If auj = avj = 1 then
∑n

`=1(au`av`) ≤ 5.

3. A¯A = Jn.

4.
∑n

i=1

∑n
j=1 aij is as small as possible.

Obviously, if we require that eachfj possesses at least
k active variables, then we will have different bounds
for id(v), and|Hu,v| respectively.
The main result of this paper generalize our previous
results from the graph point of view regardless of the
existence of underlying ideal mixing transformations.

3 Problem Solution
We start to prove our main theorem.

Theorem 4 Let G be an oriented graph withn ver-
tices. Let the following conditions hold:

(1) the number of vertices adjacent tov, id(v) ≥ k;

(2) the number of verticesw, id(w) = k, adjacent
from bothu andv is at mosth;

(3) for any two verticesu, v ∈ V (G) there is an ori-
ented path fromu to v, andv to u.

Then there existsn0 = n0(k, h) such that for alln >
n0 the number of arcse(G) ≥ (n − 1)(k + 1), and
this bound is the best possible.

Proof: Before we provee(G) ≥ (n − 1)(k + 1) we
show that the bound cannot be improved because of
the following construction:
For the incidence matrixA = (aij) of a graphG with
n vertices the following is valid:

1. a11 = 0;

2. For j = 2, 3, . . . , n we havea1j = aj1 = 1;

3. For j = 2, 3, . . . , n we haveaj(j+1 mod n) =
aj(j+2 mod n) = . . . = aj(k−1 mod n) = 1

Then for each vertex ofG we haveid(v) = od(v) =
k, the set of verticesw, id(w) = k, adjacent from both
u andv is h = k. Obviously, for any two vertices
u, v ∈ V (G) there is an oriented path fromu to v,
andv to u. Thuse(G) = (n− 1)(k + 1).

Assume by contradiction that

e(G) < (n− 1)(k + 1). (3)

We will first prove the following lemma:

Lemma 5 Let G be an oriented graph withn ver-
tices. Let for allv ∈ V (G), id(v) ≥ k, andN2

id(v) =
V (G). Thene(G) ≥ n(k + 1)− k2.

As G hasn vertices and by (1), there has to be
in G a vertexα with id(α) = k. Set Nid(α) =
{v1, v2, . . . vk}. SinceN2

id(α) = V (G), for each
u ∈ G there is a vertexw ∈ Nid(α) so that
(u,w) ∈ G. Hence, e(G) =

∑
v∈Nid(α)

id(v) +
∑

v∈V (G)−Nid(α)

id(v) ≥ n+k(n−k) = n(k+1)−k2.

The arcs of the subgraph induced byNid(α) will
be called blue arcs. Each vertex inNid(α) is a initial
vertex of a blue arc, thus there are at leastk of them.
Let X ′

i = Nid(vi) − Nid(α). If e(G) = n(k + 1) −
k2, thenX ′

i are pairwise disjoint,id(v) = k for each
vertex inV (G)−Nid(α), and there are exactlyk blue
arcs inG.

Pute(G) = n(k + 1)− k2 + δ. Then under sup-
position (3),0 ≤ δ ≤ k2− (k+1) . If there is a vertex
v ∈ V (G) − Nid(α) with id(v) = k + ε, ε > 0,
then we choose arbitrarilyε arcs with the initial ver-
tex v and color them red. Further, every arc(v, vi),
v ∈ X ′

j , j < i, will be color red as well. Clearly, the
total number of red and blue arcs isk + δ. Thus, there
are at mostδ red arcs inG. In what followsred will
stand for the number of the red arcs inG.

Set, X1 = X ′
1, X2 = X ′

2 − X1, . . . Xk = X ′
k −{X1∪X2 . . .∪Xk−1}. We assume that|X1| ≥ |X2| ≥

. . . |Xk| . Thus,|X1| ≥ n−k
k .

First of all we show

Claim 1. If v ∈ G, andid(v) = k, then(v1, v) ∈ G.

Proof of the Claim 1. Suppose by contradiction that
there is a vertexv, id(v) = k, in G so that(v1, v) /∈
G. SinceN2

id(v) = V (G), there is a path of length2
from each vertex inX1 to v. Let u ∈ Nid(v). Then
the number of vertices inX1 adjacent tou equals at
most id(u) for u ∈ V (G) − Nid(α), and equals at
most the number of red arcs whose terminal vertex is
u, for u ∈ Nid(α). As red ≤ δ, |X1| ≤ red+k×k ≤
δ + k2 < n−k

k ≤ |X1| for n ≥ 2k3− k2. The proof of
Claim 1 is complete.

The following statement is essential for the proof
of the theorem.

Claim 2. For eachv ∈ V (G)− {v1}, (v, v1) ∈ G.
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Proof of Claim 2.First of all we point out that there
are inG at leastn− k − δ vertices of indegreek. To
see this we recall that

∑
v∈Nid(α)

id(v) ≥ n.

Assume by contradiction that there is a vertexβ ∈
G, β 6= v1, so that(β, v1) /∈ G. With respect to (2),
and Claim 1, the vertexβ is adjacent to at mosth ver-
ticesv of indegreek.
Further,β might be adjacent to vertices of indegree
more thank. There are at mostδ of them. Indeed,
each vertexw, id(w) > k, andw ∈ V (G) − Nid(α)
is incident with a red arc. Also, there are at mostk −
1 vertices ofNid(α) adjacent toβ as (β, v1) /∈ G.
However, if some vertices ofNid(α) are adjacent toβ,
then either some of them is adjacent toβ by a red arc
(if β ∈ V (G)−Nid(α) or there are at leastk +1 blue
arcs inG, i.e. at mostδ − 1 red arcs, ifβ ∈ Nid(α).
To see this we recall that each vertex inNid(α) is a
terminal vertex of a blue arc.
Thus,od(β) ≤ h + δ. Taking into account that there
are at leastn − k − δ − h vertices of outdegreek
that are not adjacent fromβ, and that to eachv ∈ G
there is a vertexu ∈ Nid(v) so that(β, u) ∈ G, the
pigeon hole principle guaranties that there is a vertex

γ ∈ Nod(β) that is adjacent to at least
⌈

n−k−δ−h
h+δ

⌉
,

vertices of indegreek. However,
⌈

n−k−δ−h
h+δ

⌉
> h,

for n ≥ h2 + h + (h + 1)(k2 − k − 1) + k, which
contradicts (2), because each of those vertices would
be adjacent from bothv1 andγ. The proof of Claim 2
is complete.

To finish the proof of the theorem it suffices to recall
that for eachv ∈ G, id(v) ≥ k, and by Claim 2,
id(v1) = n − 1. Thus, the total number of arcs inG,
for n0 = max{h2+h+(h+1)(k2−k−1)+k, 2k3−
k2}, is at least(n− 1)(k + 1).

4 Conclusions
A pertinent question for application in a design of a
block cipher is to find to such a minimal graph an ideal
round transformation.
Fork = 2, minimal graphs with3n− 3 arcs are given
as follows [7]:

A2 =
(

0 J1,n−1

Jn−1,1 Pn−1

)
,

wherePn denotesn×n permutation matrix, andJm,n

denotesm × n matrix full of ones. In this case the
boundh = 1, and the round transformations are de-
scribed in [7]. To fulfil conditionN2

id(v) = V (G), it
is not possible to remove any arc from the graph. The

casek = 3, h = 5 is discussed in [4]. Fork > 3,
possible minimal graphs with(n− 1)(k + 1) arcs are
given, e.g. as follows:

Ak =
(

0 J1,n−1

Jn−1,1 Bn−1,k−1,h−1

)
,

whereBn,k,h denotesn× n matrix containingk ones
in each column, and at least 1 and at mosth ones in
each row. Summing up the number of ones by rows,
and columns respectively we get condition

(n− 1)(1 + h) ≥ (n− 1)(k + 1), (4)

or h ≥ k.
For a given incidence matrixA, one can try to find a
suitable boolean functionF , such thatΦ(F ) = A,
and conditions from Definition 2 are satisfied. A
straightforward strategy is to generate all possible
component functionsfj by trying all possible alge-
braic normal forms yielding active variables from the
set{xi| aij = 1} for the fixedj, and to test the con-
ditions of balancedness and non-linearity of all their
linear combinations. Clearly this solution is imprac-
tical even for smallern’s. A construction ofF for
generaln, andk = 2, 3 has been shown in [7, 4] pro-
viding upper bound for parameterh, and thus forn0

too.
It is still an open question, how to construct func-

tion F for both generaln, andk > 3. We believe, that
such a construction exists, and that in this construc-
tion more restrictions on the parameterh, andn0 will
be specified.

Acknowledgements: The research was supported
by the Slovak National Grant Agency VEGA No.
1/0161/03.

References:

[1] R.A. Brualdi, H.J. Ryser,Combinatorial Matrix
Theory.Cambridge University Press, Cambridge
1991.

[2] J. Daemen, V. Rijmen,The Design of Rijn-
dael. Springer–Verlag, Berlin–Heidelberg–New
York–Tokyo 2002.
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