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Abstract: - Researches show that assumptions condition of existing software reliability growth models are 
difficult to be satisfied in actual projects which restrict the universality of models. Classical models neglect 
observation noise and its affection on accurate evaluation to software reliability. This paper proposes a time series 
software reliability growth model and transforms it into state space model and Kalman filter is used to reduce 
noise. Testing data of filtering noise can shows the essential rule of data better and improves goodness of fit. 
Simulation result shows the validity of this method. 
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1 Introduction 
The applications of computer systems are so widely 
spread and the software systems play a more and 
more important role in the whole system. Software 
reliability is one of the essential factors that affect 
software performance. The definition of reliability for 
software is the probability of execution without 
failure for some specified interval of natural units or 
time [1,2].  

Many software reliability growth models have 
been proposed to evaluate software reliability. 
Classical software reliability growth models have 
great influence on software reliability modeling 
research. Software reliability modeling has become 
one of the most important aspects in software 
reliability engineering since Jelinski-Moranda model 
appeared [3]. Software reliability modeling is often 
concerned with the behavior of software reliability 
and uses historical software reliability failure data to 
assess current software reliability status and forecast 
future software failures [4]. 

The assumptions conditions are the key factors of 
establishing software reliability growth model. There 
is a relation between assumptions chosen and 
modeling success. But in practical application, quite a 
few assumptions are not accordant with actual 
software development and test environment and these 
assumptions restricted the universality of models. So 

it has reached a common viewpoint in software 
reliability evaluation field that none of these models 
is able to cope properly with all the possible 
situations [5]. 

To apply these models, it is necessary to know how 
well the models suit an actual observation failure data 
set. Large disagreements sometimes appear among 
the software reliability predictions obtained from 
different software reliability growth models. So 
another important issue in software reliability 
modeling is to improve as much as possible the 
prediction accuracy [6].  

Based on above discussion, this paper proposes a 
universal method for software reliability prediction 
by time series analysis. We establish a time series 
autoregression model and transform it to state space 
model. Using Kalman filter, more accurate prediction 
results are obtained. 

This paper is organized as follows. Section 2 
discusses observation noise of software testing data 
which has been neglected by many classical software 
reliability growth models. Section 3 shows the 
feasibility of software reliability modeling based on 
time series and the implemented algorithm is given. 
In section 4, the simulation analysis of testing data is 
provided. Finally, a brief conclusion is presented. 
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2 Observation Noise and Kalman Filter 
Some former models neglect observation noise. In 
fact, many factors affect testing data. What you get 
are not real data, that is to say observation data exist 
disturbance, which is called “observation noise”. 
Observation noise has white noise and colored noise. 
To compute simply, we treat disturbance as white 
noise with zero mean [8]. 

Kalman filter theory is based on a state-space 
approach in which a state equation model and an 
observation equation model are shown. In data 
processing, a filter is a function or procedure which 
removes unwanted disturbance. The concept of 
filtering and filter functions is particularly useful in 
engineering [9]. 

Kalman filter and the Wiener filter are two 
important linear filters for data estimation. During 
1940s, in order to meet the requirements derived from 
World II war military technology, classical Wiener 
filtering theory was proposed by American scholars 
N. Wiener and Kolmogorov respectively. Wiener 
filtering theory was based on frequency domain 
method and suitable for stationary stochastic 
processes. The concepts of state variables and state 
space for systems were introduced by American 
scholars R.E. Kalman and R. S. Bucy in 1960. They 
presented the state space method on time domain that 
was called Kalman filtering theory. Considering the 
statistic characteristics of estimated variables and 
measurements, optimal recursive filtering algorithms 
were obtained by using the Kalman filtering theory. 
They were suitable for multi-variable systems, 
time-varying systems and non-stationary stochastic 
processes and easy for real-time implementation, thus 
overcame the shortcomings and limitations of 
classical Wiener filtering theory [10]. 

If we establish a time series autoregression model, 
we can transform it into state space model and use 
Kalman filter to reduce disturbance of failures data. 

 
 

3 The Implemented Algorithms 
Time series analysis theory is a method of describing 
statistics character of dynamic data, which can set up 
time series model from limited sample data. Its 
advantage is convenience and practicality. There are 
many contributions on estimation and prediction with 
autoregression time series models. Time series 
analysis method is well studied in some statistical 
literatures. However, its use in software reliability 
engineering is rather limited [11]. 

Time series is defined as  an ordered sequence of 
values of a variable at equally spaced time intervals 
[12].  

Based on software reliability analysis, input data 
are cumulative number of software failures or failure 
intervals mainly. That is to say, software reliability 
failure data are discrete data sequence. Whether it is 
steady or not, we can use the data to modeling and 
evaluate software reliability by applying proper time 
series method.  

The cumulative number of failures )(kM is 
increasing and trend to a fixed value. Considering 
observation disturbance, we can establish the 
following time series model: 

)()1()()( kkMkkM εθ +−=                                      (1) 
where )(kε is zero mean white noise. 

Here, it is assumed that the data is observed with 
white noise and the testing data is uncorrelated with 
the observation noise. From the autoregression model, 
we can establish the state space model as the 
following: 

)1()1()()( −+−= kwkXkkX ϕ                                (2) 
)()()( kvkXky +=                                                         (3) 

where )(kX  is the system state vector, )(ky  is the 
observation vector, )(kw  is the process noise vector 
and )(kv  is the observation noise vector. )(kw and 

)(kv  in this case are assumed to be mutually 
independent and zero mean white noise. The 
covariances of )(kw  and )(kv  are given as  

RkvkvEQkwkwE TT == ])(),([,])(),([ . 
In which, we can get the time series { })(kϕ  from 

{ })(ˆ kθ by applying smoothing filter: 

)(ˆ)1()1()( kkk θλλϕϕ −+−=                                   (4) 

where the initial is )1(ˆ)1( θϕ = and 87.0=λ  in the 

simulation. Series { })(ˆ kθ  is calculated from equation 
(12) to (14). 

The model system has the following Kalman filter 
equations [13,14]: 

)1()1()|1(ˆ)1|1(ˆ ++++=++ kkKkkXkkX ε  (5) 

)|(ˆ)()|1(ˆ kkXkkkX ϕ=+                              (6) 

)|1(ˆ)1()1( kkXkyk +−+=+ε                      (7) 
1])|1()[|1()1( −+++=+ RkkPtkPkK      (8) 

QkkkPkkkP T +=+ )()|()()|1( ϕϕ              (9) 
)|1()]1([)1|1( kkPkKIkkP n ++−=++    (10) 

00 )0|0(,)0|0(ˆ PPX == µ                            (11) 

)]|(ˆ)(ˆ)1([

)1()(ˆ)1(ˆ

kkXkky

kKkk RLS

θ

θθ

−+

++=+
                     (12) 
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To calculate above equations, for 4)0|0(ˆ =X , 
10000)0|0( =P , 845.2=Q , 216.77=R ,

56.0=ω . 
 
 
4 Simulations and Analysis 
Software testing data in table 1 comes from Data7 in 
chapter 17 in [15], where Day is the test time in days 
and CF is cumulative number of software failures. 
 
 
Table 1 A set of software failure data 
Day CF Day CF Day CF Day CF 

0 4 38 186 65 374 87 494 
2 11 40 193 66 379 88 496 
4 21 41 200 67 386 89 497 
9 34 43 205 68 393 90 508 
11 42 45 212 69 407 91 509 
16 55 48 218 70 420 92 511 
17 59 49 224 71 434 93 513 
20 66 50 228 72 445 94 517 
22 74 51 240 73 447 95 518 
23 75 52 246 74 451 96 522 
24 81 53 253 75 455 97 523 
26 94 54 261 76 458 98 524 
27 101 55 272 77 464 99 526 
28 110 56 278 78 470 100 527 
29 118 57 287 79 473 101 528 
31 123 58 294 80 476 102 529 
32 133 59 306 81 480 103 530 
33 140 60 318 82 481 104 532 
34 151 61 333 83 483 105 533 
35 156 62 347 84 484 107 535 
36 164 63 354 85 486   
37 177 64 363 86 491   

       
 
Table 2 Comparison of observed data and estimated 
data of Goel-Okumoto (GO) model and the 
autoregression model with kalman filter 

Day Observed 
Data 

GO 
Estimated 

Data 

GO 
Estimated 

Error 

Kalman 
Estimated 

Data 

Kalman 
Estimated 

Error 
5 21 64.1607 43.1607 27.2545 6.2545 

15 42 172.2497 130.2497 46.2239 4.2239 
25 81 258.0441 177.0441 84.8134 3.8134 
35 156 326.1426 170.1426 159.4130 3.4130 
45 212 380.1950 168.1950 209.6867 -2.3133 

55 272 423.0986 151.0986 268.0939 -3.9061 
65 374 457.1528 83.1528 380.9347 6.9347 
75 455 484.1830 29.1830 460.1247 5.1247 
85 486 505.6379 19.6379 485.0410 -0.9590 
95 518 522.6676 4.6676 520.8737 2.8737 
 
 
Table 3 Comparison of observed data and predicted 
data of Goel-Okumoto (GO) model and the 
autoregression model with Kalman filter 

Day Observed 
Data 

GO 
Predicted

Data 

GO 
Predicted 

Error 

Kalman 
Predicted 

Data 

Kalman 
Predicted 

Error 
98 524 527.0553 3.0553 524.2106 0.2106 
99 526 528.4516 2.4516 525.4241 -0.5759 

100 527 529.8160 2.8160 526.6403 -0.3597 
101 528 531.1492 3.1492 527.8593 -0.1407 
102 529 532.4520 3.4520 529.0812 0.0812 
103 530 533.7251 3.7251 530.3059 0.3059 
104 532 534.9691 2.9691 531.5334 -0.4666 
105 533 536.1846 3.1846 532.7638 -0.2362 
106 533 537.3725 4.3725 533.9970 0.9970 
107 535 538.5332 3.5332 535.2331 0.2331 

         
                   
Table 4 Comparison of relative error  

Estimated Relative Error Predicted Relative Error
Day GO 

model 
With 

Kalman 
Day GO 

model 
With 

Kalman 
5 2.0553 0.2978 98 0.0058 0.0004 
15 3.1012 0.1006 99 0.0047 -0.0011 
25 2.1857 0.0471 100 0.0053 -0.0007 
35 1.0907   0.0219 101 0.0060 -0.0003 
45 0.7934 -0.0109 102 0.0065 0.0002 
55 0.5555 -0.0144 103 0.0070 0.0006 
65 0.2223 0.0185 104 0.0056 -0.0009 
75 0.0641 0.0113 105 0.0060 -0.0004 
85 0.0404 -0.0020 106 0.0082 0.0019 
95 0.0090 0.0055 107 0.0066 0.0004 

)(
)()(ˆ

error   relative   Estimated
kM

kMkM −
=  

)(
)()|(ˆ

error   relative   Predicted
pNM

pNMNpNM
+

+−+
=  

 
Table 5 Comparison of SSE  

Estimated SSE Predicted SSE 
GO 

model 
With 

Kalman 
GO 

model 
With 

Kalman 
1358400 2934.3 109.5439 1.9473 
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Fig.1 Goel-Okumoto model 

 

 
Fig.2 )(kM , )(ˆ kM and )|(ˆ NpNM +  

 

 
Fig.3 )(kθ and )(kϕ  

 

 
Fig.4 )(kX  and )|(ˆ kkX  

 

 
       Fig.5 Relative error 

 
In Table 2, we can see that the estimated data of the 

autoregression model with Kalman filter are more 
close to real observation data. The estimated errors 
are far less than Goel-Okumoto model’s. 
Goel-Okumoto nonhomogeneous Poisson process 
model has a strong influence on software reliability 
modeling. So we illustrate the proposed model and 
Goel-Okumoto model. To verify fitting quality and 
prediction quality of the proposed model, this paper 
divides software failures into two parts, the first part 
data are treated as fitting data. According to the fitting 
results, we can predict the second part failures data. 
The comparing result of observed data and predicted 
data shows that the prediction quality of the proposed 
model is validated.  

Table 3 shows the similar contrast about the 
predicted data of the two models. We find the relative 
errors of the autoregression model with Kalman filter 
are very small. Further, Table 4 shows the comparison 
of relative errors of filtered model and Goel-Okumoto 
model. From this table, we can get the conclusion that 
both relative errors of estimated and predicted data 
with Kalman filter are far less than Goel-Okumoto 
model’s. The sums of square errors (SSE) [16] are 
calculated in Table 5. As can be seen from the table, 
SSE of the observed data, the estimated data and the 
predicted data are illustrated to show the predictive 
validity of the new model with Kalman filter. A SSE 
value closer to zero indicates a better fit. 
    Fig.1 and Fig.2 illustrate corresponding data of the 
Goel-Okumoto model and the new model with 
Kalman filter, including observed data, estimated 
data and predicted data. We can see that the proposed 
model can fit the failures data better because it uses 
weighted least squares method and emphasizes the 
effect of current failures data. 

Fig.3 gives the curve of parameter )(kθ  and )(kϕ . 
Actually, )(kϕ  is the filter data of )(kθ . The filtered 
data can improve the goodness of fitting model. 

In Fig. 4, we can see that )(kX  are observation 
failures data and )|(ˆ kkX  are filtered data using 
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Kalman filter. The calibrated failures data can filter 
disturbance and reflect the nature of data. Fig.5 
illustrates the relative errors and shows good 
evaluation results of the new model. 
 
 
5 Conclusion 
According to the character of time series, an 
autoregression model is established and transformed 
to state space model. In the model, the using of 
Kalman filter reduces observation noise. The model 
with Kalman filter can represent the actual software 
failures data relatively.  

The new model considers the disturbance noise of 
observed data and has no need for some unrealistic 
assumptions condition. All these accord with the 
characteristic of real projects. 

 As the parameters are time-varying, the proposed 
model with Kalman filter can suit different software 
testing data and has more widely applicability. By 
compare with Goel-Okumoto model, the proposed 
model fits the real project fairly well. The simulation 
experiments verify the accuracy and efficiency of this 
new model. 
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