Application of Kalman Filter in Time Series Software Reliability Growth Model

GUO JUNHONG^{1,2}, LIU HONGWEI¹, YANG XIAOZONG¹, ZUO DE CHENG¹ School of Computer Science and Technology ¹Harbin Institute of Technology No.92, West Da-zhi Street, Harbin, 150001 School of Computer Science and Technology ²Heilongjiang University No.74, Xue Fu Road, Harbin, 150080 CHINA

Abstract: - Researches show that assumptions condition of existing software reliability growth models are difficult to be satisfied in actual projects which restrict the universality of models. Classical models neglect observation noise and its affection on accurate evaluation to software reliability. This paper proposes a time series software reliability growth model and transforms it into state space model and Kalman filter is used to reduce noise. Testing data of filtering noise can shows the essential rule of data better and improves goodness of fit. Simulation result shows the validity of this method.

Keywords: - Software reliability growth model; Kalman filter; Observation noise; Time series analysis; software reliability evaluation/prediction

1 Introduction

The applications of computer systems are so widely spread and the software systems play a more and more important role in the whole system. Software reliability is one of the essential factors that affect software performance. The definition of reliability for software is the probability of execution without failure for some specified interval of natural units or time [1,2].

Many software reliability growth models have been proposed to evaluate software reliability. Classical software reliability growth models have great influence on software reliability modeling research. Software reliability modeling has become one of the most important aspects in software reliability engineering since Jelinski-Moranda model appeared [3]. Software reliability modeling is often concerned with the behavior of software reliability and uses historical software reliability failure data to assess current software reliability status and forecast future software failures [4].

The assumptions conditions are the key factors of establishing software reliability growth model. There is a relation between assumptions chosen and modeling success. But in practical application, quite a few assumptions are not accordant with actual software development and test environment and these assumptions restricted the universality of models. So it has reached a common viewpoint in software reliability evaluation field that none of these models is able to cope properly with all the possible situations [5].

To apply these models, it is necessary to know how well the models suit an actual observation failure data set. Large disagreements sometimes appear among the software reliability predictions obtained from different software reliability growth models. So another important issue in software reliability modeling is to improve as much as possible the prediction accuracy [6].

Based on above discussion, this paper proposes a universal method for software reliability prediction by time series analysis. We establish a time series autoregression model and transform it to state space model. Using Kalman filter, more accurate prediction results are obtained.

This paper is organized as follows. Section 2 discusses observation noise of software testing data which has been neglected by many classical software reliability growth models. Section 3 shows the feasibility of software reliability modeling based on time series and the implemented algorithm is given. In section 4, the simulation analysis of testing data is provided. Finally, a brief conclusion is presented.

2 Observation Noise and Kalman Filter

Some former models neglect observation noise. In fact, many factors affect testing data. What you get are not real data, that is to say observation data exist disturbance, which is called "observation noise". Observation noise has white noise and colored noise. To compute simply, we treat disturbance as white noise with zero mean [8].

Kalman filter theory is based on a state-space approach in which a state equation model and an observation equation model are shown. In data processing, a filter is a function or procedure which removes unwanted disturbance. The concept of filtering and filter functions is particularly useful in engineering [9].

Kalman filter and the Wiener filter are two important linear filters for data estimation. During 1940s, in order to meet the requirements derived from World II war military technology, classical Wiener filtering theory was proposed by American scholars N. Wiener and Kolmogorov respectively. Wiener filtering theory was based on frequency domain method and suitable for stationary stochastic processes. The concepts of state variables and state space for systems were introduced by American scholars R.E. Kalman and R. S. Bucy in 1960. They presented the state space method on time domain that was called Kalman filtering theory. Considering the statistic characteristics of estimated variables and measurements, optimal recursive filtering algorithms were obtained by using the Kalman filtering theory. They were suitable for multi-variable systems, time-varying systems and non-stationary stochastic processes and easy for real-time implementation, thus overcame the shortcomings and limitations of classical Wiener filtering theory [10].

If we establish a time series autoregression model, we can transform it into state space model and use Kalman filter to reduce disturbance of failures data.

3 The Implemented Algorithms

Time series analysis theory is a method of describing statistics character of dynamic data, which can set up time series model from limited sample data. Its advantage is convenience and practicality. There are many contributions on estimation and prediction with autoregression time series models. Time series analysis method is well studied in some statistical literatures. However, its use in software reliability engineering is rather limited [11].

Time series is defined as an ordered sequence of values of a variable at equally spaced time intervals [12].

Based on software reliability analysis, input data are cumulative number of software failures or failure intervals mainly. That is to say, software reliability failure data are discrete data sequence. Whether it is steady or not, we can use the data to modeling and evaluate software reliability by applying proper time series method.

The cumulative number of failures M(k) is increasing and trend to a fixed value. Considering observation disturbance, we can establish the following time series model:

$$M(k) = \theta(k)M(k-1) + \varepsilon(k) \tag{1}$$

where $\varepsilon(k)$ is zero mean white noise.

Here, it is assumed that the data is observed with white noise and the testing data is uncorrelated with the observation noise. From the autoregression model, we can establish the state space model as the following:

$$X(k) = \varphi(k)X(k-1) + w(k-1)$$
(2)

$$y(k) = X(k) + v(k)$$
(3)

where X(k) is the system state vector, y(k) is the observation vector, w(k) is the process noise vector and v(k) is the observation noise vector. w(k) and v(k) in this case are assumed to be mutually independent and zero mean white noise. The covariances of w(k) and v(k) are given as

 $E[w(k), w(k)^{T}] = Q, E[v(k), v(k)^{T}] = R.$

In which, we can get the time series $\{\varphi(k)\}$ from $\{\hat{\varphi}(k)\}$ by applying smoothing filter:

$$\varphi(k) = \lambda \varphi(k-1) + (1-\lambda)\hat{\theta}(k) \tag{4}$$

where the initial is $\varphi(1) = \hat{\theta}(1)$ and $\lambda = 0.87$ in the simulation. Series $\{\hat{\theta}(k)\}$ is calculated from equation (12) to (14).

The model system has the following Kalman filter equations [13,14]:

$$\hat{X}(k+1 \mid k+1) = \hat{X}(k+1 \mid k) + K(k+1)\varepsilon(k+1)$$
(5)

$$\hat{X}(k+1|k) = \varphi(k)\hat{X}(k|k)$$
(6)

$$\varepsilon(k+1) = y(k+1) - \hat{X}(k+1|k) \tag{7}$$

$$K(k+1) = P(k+1|t)[P(k+1|k) + R]^{-1}$$
(8)

$$P(k+1|k) = \varphi(k)P(k|k)\varphi(k)^{T} + Q$$
(9)

$$P(k+1|k+1) = [I_n - K(k+1)]P(k+1|k)$$
(10)

$$X(0|0) = \mu_0, P(0|0) = P_0$$
(11)

$$\hat{\theta}(k+1) = \hat{\theta}(k) + K_{RLS}(k+1)$$

$$[v(k+1) - \hat{\theta}(k)\hat{X}(k \mid k)]$$
(12)

$$K_{RLS}(k+1) = \frac{P_{RLS}(k)\hat{X}(k+1|k+1)}{\omega + P_{RLS}(t)\hat{X}(k+1|k+1)^2}$$
(13)

$$P_{RLS}(k+1) = [1 - K_{RLS}(k+1)\hat{X}(k+1|k+1)]$$

$$P_{RLS}(k) / \lambda$$
(14)

To calculate above equations, for $\hat{X}(0|0) = 4$, P(0|0) = 10000, Q = 2.845, R = 77.216, $\omega = 0.56$.

4 Simulations and Analysis

Software testing data in table 1 comes from Data7 in chapter 17 in [15], where Day is the test time in days and CF is cumulative number of software failures.

Table 1	A	set	of	software	failure	data
---------	---	-----	----	----------	---------	------

Day	CF	Day	CF	Day	CF	Day	CF
0	4	38	186	65	374	87	494
2	11	40	193	66	379	88	496
4	21	41	200	67	386	89	497
9	34	43	205	68	393	90	508
11	42	45	212	69	407	91	509
16	55	48	218	70	420	92	511
17	59	49	224	71	434	93	513
20	66	50	228	72	445	94	517
22	74	51	240	73	447	95	518
23	75	52	246	74	451	96	522
24	81	53	253	75	455	97	523
26	94	54	261	76	458	98	524
27	101	55	272	77	464	99	526
28	110	56	278	78	470	100	527
29	118	57	287	79	473	101	528
31	123	58	294	80	476	102	529
32	133	59	306	81	480	103	530
33	140	60	318	82	481	104	532
34	151	61	333	83	483	105	533
35	156	62	347	84	484	107	535
36	164	63	354	85	486		
37	177	64	363	86	491		

Table	2 Co	omparison	of obs	served	data	and	estim	ated
data	of	Goel-Oku	moto	(GO)	mo	del	and	the
autore	gress	sion model	with k	alman	filter			

	Obsorved	GO	GO	Kalman	Kalman
Day	Data	Estimated	Estimated	Estimated	Estimated
		Data	Error	Data	Error
5	21	64.1607	43.1607	27.2545	6.2545
15	42	172.2497	130.2497	46.2239	4.2239
25	81	258.0441	177.0441	84.8134	3.8134
35	156	326.1426	170.1426	159.4130	3.4130
45	212	380.1950	168.1950	209.6867	-2.3133

55	272	423.0986	151.0986	268.0939	-3.9061
65	374	457.1528	83.1528	380.9347	6.9347
75	455	484.1830	29.1830	460.1247	5.1247
85	486	505.6379	19.6379	485.0410	-0.9590
95	518	522.6676	4.6676	520.8737	2.8737

Table	3 C	omparison o	f observed	data	and	pred	icted
data	of	Goel-Okum	oto (GO)	mo	del	and	the
autore	egres	sion model w	ith Kalma	n filter	r		
		<i><i>a</i>²</i>	~ ~ ~				

	Obsorved	GO	GO	Kalman	Kalman
Day	Doto	Predicted	Predicted	Predicted	Predicted
	Data	Data	Error	Data	Error
98	524	527.0553	3.0553	524.2106	0.2106
99	526	528.4516	2.4516	525.4241	-0.5759
100	527	529.8160	2.8160	526.6403	-0.3597
101	528	531.1492	3.1492	527.8593	-0.1407
102	529	532.4520	3.4520	529.0812	0.0812
103	530	533.7251	3.7251	530.3059	0.3059
104	532	534.9691	2.9691	531.5334	-0.4666
105	533	536.1846	3.1846	532.7638	-0.2362
106	533	537.3725	4.3725	533.9970	0.9970
107	535	538.5332	3.5332	535.2331	0.2331

Table 4 Comparison of relative error

	Estimated R		Predicted Relative Error					
Day	GO	With	Day	GO	With			
	model	Kalman		model	Kalman			
5	2.0553	0.2978	98	0.0058	0.0004			
15	3.1012	0.1006	99	0.0047	-0.0011			
25	2.1857	0.0471	100	0.0053	-0.0007			
35	1.0907	0.0219	101	0.0060	-0.0003			
45	0.7934	-0.0109	102	0.0065	0.0002			
55	0.5555	-0.0144	103	0.0070	0.0006			
65	0.2223	0.0185	104	0.0056	-0.0009			
75	0.0641	0.0113	105	0.0060	-0.0004			
85	0.0404	-0.0020	106	0.0082	0.0019			
95	0.0090	0.0055	107	0.0066	0.0004			

Estimated relative error = $\frac{\hat{M}(k) - M(k)}{M(k)}$

Predicted relative error =
$$\frac{\hat{M}(N + p \mid N) - M(N + p)}{M(N + p)}$$

Table 5 Comparison of SSE

Estimat	ted SSE	Predicted SSE		
GO With		GO	With	
model	Kalman	model	Kalman	
1358400	2934.3	109.5439	1.9473	

In Table 2, we can see that the estimated data of the autoregression model with Kalman filter are more close to real observation data. The estimated errors are far less than Goel-Okumoto model's. Goel-Okumoto nonhomogeneous Poisson process model has a strong influence on software reliability modeling. So we illustrate the proposed model and Goel-Okumoto model. To verify fitting quality and prediction quality of the proposed model, this paper divides software failures into two parts, the first part data are treated as fitting data. According to the fitting results, we can predict the second part failures data. The comparing result of observed data and predicted data shows that the prediction quality of the proposed model is validated.

Table 3 shows the similar contrast about the predicted data of the two models. We find the relative errors of the autoregression model with Kalman filter are very small. Further, Table 4 shows the comparison of relative errors of filtered model and Goel-Okumoto model. From this table, we can get the conclusion that both relative errors of estimated and predicted data with Kalman filter are far less than Goel-Okumoto model's. The sums of square errors (SSE) [16] are calculated in Table 5. As can be seen from the table, SSE of the observed data, the estimated data and the predicted data are illustrated to show the predictive validity of the new model with Kalman filter. A SSE value closer to zero indicates a better fit.

Fig.1 and Fig.2 illustrate corresponding data of the Goel-Okumoto model and the new model with Kalman filter, including observed data, estimated data and predicted data. We can see that the proposed model can fit the failures data better because it uses weighted least squares method and emphasizes the effect of current failures data.

Fig.3 gives the curve of parameter $\theta(k)$ and $\varphi(k)$. Actually, $\varphi(k)$ is the filter data of $\theta(k)$. The filtered data can improve the goodness of fitting model.

In Fig. 4, we can see that X(k) are observation failures data and $\hat{X}(k \mid k)$ are filtered data using

Kalman filter. The calibrated failures data can filter disturbance and reflect the nature of data. Fig.5 illustrates the relative errors and shows good evaluation results of the new model.

5 Conclusion

According to the character of time series, an autoregression model is established and transformed to state space model. In the model, the using of Kalman filter reduces observation noise. The model with Kalman filter can represent the actual software failures data relatively.

The new model considers the disturbance noise of observed data and has no need for some unrealistic assumptions condition. All these accord with the characteristic of real projects.

As the parameters are time-varying, the proposed model with Kalman filter can suit different software testing data and has more widely applicability. By compare with Goel-Okumoto model, the proposed model fits the real project fairly well. The simulation experiments verify the accuracy and efficiency of this new model.

References:

[1] Huang Xizi, *Software Reliability*, *Security and Quality Assurance*, Publishing House of Electronics Industry, 2002.

[2] FL. Popentiu, D.N. Boros, Software Reliability Growth Supermodels, *Microelectronics and Reliability*, Vol.36(4), 1996, pp. 485-491.

[3] J.Musa, A.Jannino, and K.Okumoto, *Software Reliability- Measurement, Prediction, Application*, McGraw Hill, New York, 1987.

[4] PK Kapur, S. Younes, Modelling an imperfect debugging pheonmenon in software reliability, *Microelectronics and Reliability*, Vol.36, 1996, pp. 645-650.

[5] Amerit L Goel., Software reliability models: Assumptions, limitations and applicability, *IEEE transaction on software engineering*, SE11 (12), 1985, pp. 1411~1425.

[6] PK Kapur, S. Younes, Software reliability growth model with error dependency, *Microelectronics and Reliability*, Vol.35 (2),1995, pp. 273-278.

[7] Z. Jelinski and PB Moranda, Software Reliability Research, *Statistical Computer Performance Evaluation*, Academic, New York, 1972, pp. 465-485.

[8] Seiichi Nakamori, Filtering algorithm based on innovations theory for white Gaussian plus colored observation noise, *Journal of Information Science* and Engineering, Vol.5, 1989, pp.157-166.

[9] Seiichi Nakamori, Estimation technique using covariance information in linear discrete-time systems, *Signal Processing*, vol.43(2), 1995, pp. 169-179.

[10] Giuliano De Rossi, Kalman filtering of consistent forward rate curves: a tool to estimate and model dynamically the term structure, *Journal of Empirical Finance*, vol.11(2), 2004, pp. 277-308.

[11] Wang ZL., *Time series Analysis*, Publishing House of Chinese Statistics, 2000.

[12] Seiichi Nakamori, Estimation of multivariate signal by output autocovariance data in linear discrete-time systems, *Mathematical and Computer Modeling*, vol.24(1), 1996, pp.97-114.

[13] Dengzili, *Modern Time Series Analysis and Application*, Publishing House of knowledge, 1989.

[14] Dengzili, *Theory and Application of Optimal Filtering: Modern Time Series Analysis Method*, Publishing House of Harbin Institute of Technology, 2000.

[15] M. R. Lyu, Ed., *Handbook of Software Reliability Engineering*, McGraw Hill, 1996.

[16] Takamasa Nara, Masahiro Nakata, Akihiro Ooishi, Software Reliability Growth Analysis-Application of NHPP Models and Its Evaluation, *IEEE Transactions on Reliability*, HASE 1996, pp. 222-227.