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Abstract:-  This paper investigates error rates when matching between datasets on date of birth, sex 

and locality. Using US health insurance data and voter registration rolls, Sweeney demonstrated  how 
“sanitised” data retaining this information can be matched with records containing uniquely identifying 
information.  Individuals are uniquely identified by year of birth, sex and locality unless they share a 
birthday with someone with the same attributes. The distribution of multiple occurrences of birthdays is 
therefore investigated for various size populations, using Australian data to illustrate.  Assuming typical 
age/sex distributions for localities in which no more than 1% of the population is in any cell, a locality 
population of 4000 will enable an expected 95% of the population to be identified. A locality population 
of half a million is needed to reduce the percentage of matches to 0.1%.   
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1 Introduction 
Benefits to individuals and to society can result when 
potentially sensitive record-level data is shared 
between organisations. Such data, sometimes termed 
microdata, can for example aid research into public 
health, or help administrators plan future critical 
infrastructure. 

In an effort to satisfy privacy considerations, 
record level data may be “sanitized” by removing 
names but, for operational reasons, leaving 
demographic information, in particular date of birth 
(DoB), sex, and locality, which are non-identifying in 
large populations. However, other datasets may 
provide identifying information along with this same 
basic demographic data. Such datasets might be 
generated to store less sensitive information -- for 
example, as mailing lists – but when linked to 
databases containing information not intended for 
disclosure, can support re-identification and lead to 
breaches of privacy. In a compelling example, 
Sweeney demonstrated matching across datasets on 
DoB, sex and locality using United States health 
insurance and voter registration records [5]. 

Investigations into sets of attributes which form 
quasi-identifiers and allow linking of datasets form 
an active area in privacy research (eg, [1, 2, 4]) Using 
United States Census data, Sweeney showed that 
nearly 87 per cent of individuals can be expected to 
be uniquely identified by their DoB, sex and zipcode; 
50 per cent by DoB, sex, and the city, town, or 
municipality in which the individual lives; and 18 per 

cent by DoB, sex and county [6].  Linking is 
interesting not only for its ramifications for privacy, 
but also from the perspective of those legitimately 
attempting to match across datasets for which 
uniquely identifying information is either not 
available or is corrupted in one or both datasets. 

Sweeney’s results concern very variable 
populations; for example, US zip code populations 
vary from hundreds to many tens of thousands. This 
paper therefore looks more closely at the role of the 
number of inhabitants in a locality in determining the 
expected number of correct matches that can be made 
between datasets on the basis of DoB, sex and 
locality.  

It is assumed here that the two datasets contain 
one record per individual.  It is also assumed that  

(a) attribute data in the datasets Di accurately 
represents a population Pi  (i = 1, 2) and 

(b) P2  ⊆ P1 where the dataset D1 is the “master” 
set. 

It is not assumed that either set necessarily 
contains identifying information, only that both 
contain the demographic data. 

Accurate matching is only possible when DoB, 
sex and locality refer to a unique individual amongst 
the population recorded in either of the datasets. If 
multiple individuals share the same identifiers, then 
matching performance becomes probabilistic. 
Clearly, matching performance depends on the size 
of the overall populations Pi. So we need to compute 
the probability that an individual has the same DoB 
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and sex as exactly q-1 other individuals in a locality 
with population N.  We will use this to describe how 
the locality population affects matching across 
datasets. 

The next section looks at co-occurrence of 
birthdays as a function of group size. Section 3 
introduces age-sex distributions in localities to 
convert these results to findings about co-occurrence 
of DoB/sex/locality identifiers, illustrating on data 
drawn from Australian localities.  

 
2 The Birthday Problem 
Assuming equal probability of birthdays across the 
year, and ignoring leap years, it is easy to see that the 
probability that an individual has unique birthday 
amongst a set of N people is (364/365)N-1. The 
probability pq that there are exactly q-1 other 
individuals with that birthday is 
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Figure 1 depicts pq  as a function of population 

size N, for q = 1 ..4. That is, Fig. 1 shows how 
increasing population size N affects the probability of 
an individual having a unique birthday, or 
equivalently, having a unique DoB/age/sex identifier 
in a locality in which N people are of their age and 
sex.  A population of 250 gives a 50% chance of 
being uniquely identified. A population of around 
2500 is needed to reduce the number of unique 
birthdays to 0.1%. 

The well known birthday matching problem [3] 
explores the more general probability of a given 
number m of unique birthdays occurring amongst N 
individuals. The solution is based on the probability 
p(N, k, j) that when N things are distributed randomly 
into k baskets, then exactly j of the baskets will be 
empty. The probability is derived from a 
combinatorial argument 1.   

 

                                                 
1 The formulation of p(N, k, j) is : 
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Fig. 1. Predicted probability that an individual 
shares a birthday for none, one, two or three other 
individuals, as a function of group size.   

 
 
 

 
Fig. 2. Probability that a given proportion of 

individuals have a unique birthday, as a function of 
group size 
 
 
Introducing seasonal variation in the distribution of 
birthdays has no appreciable effect on solutions to 
the birthday problem using American data [3]. 
There, the distribution of birthdays varies by no 
more than 5-7% throughout the year. Although the 
reversal of the seasons and the coincidence of the 
summer vacation with Christmas might alter the 
distribution for Southern Hemisphere countries, 
adjustment for non-uniform distributions has not 
been judged to be warranted in this analysis.   

Assuming equal probability of birthdays across 
the year and ignoring leap years, the probability that 
N people have between them exactly j birthdays is 
p(N, 365, 365-j).  Here, by necessity, j is at least 1 
and is no greater than the minimum of N and 365.  

Impact of group size on probability of co-
occurring birthdays 
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Take out at random one person for each of the j 
birthdays that the group shares. Then anyone who has 
a unique birthday must be in this set of j individuals. 
The probability that exactly m of the j birthdays is 
unique is the probability that there are exactly m 
empty “baskets” after randomly distributing the 
remaining N-j birthdays into the j birthday “baskets”. 
This is p(N-j, j, m).  The probability ρ(N, m) of m 
unique birthdays amongst a group of N individuals is 
therefore 

 
ρ(N, m)  = ∑j=m to min(N, 365) p(N, 365, 365-j) p(N-j, j,m) 

  (2) 
 

This is the probability that m/N of the population 
has a unique birthday. The expected proportion of the 
population whose birthdays are unique in that 
population, p1(N), is ∑m =0 .. N, ρ(N, m)m/N. Fig. 2 
depicts the probability of various percentages of the 
individuals in a group having a unique birthday, each 
as a function of group size.  The jagged form of some 
of these plots is due to the fact that the percentages 
have to be converted to integral numbers of unique 
birthdays2.   

The maximum group sizes at which a given 
proportion of the population has unique birthdays, to 
a given confidence level, is listed in Table 1.  

 
Table 1. Maximum population size for a given 

proportion of the population to have unique 
birthdays to a given probability level. 

 
 
 

Proportion/ 
Confidence 

level 

5% 95% 

0.8 Confidence 972 14 
0.9 Confidence 952 11 
0.95 Confidence 940 6 

 
 
 
3 Allowing for age-sex distribution 
The age-sex distribution of different localities is 
needed to translate the birthday problem findings into 
the predictions about co-occurrence of DoB, sex and 

                                                 
2 For example, the graph for 95% unique has a local 
minimum at N=30, because this is the smallest size 
at which .95 N  rounds down to N-2 and hence the 
percentage includes the possibility of one pair of 
coincident birthdays. (Note that there is always zero 
probability of exactly N-1 unique birthdays out of a 
group of N.) 

locality that are required for matching between the 
data sets Di. These distributions vary between 
countries, and within countries they may vary 
markedly between rural and urban localities.  
 

 
Fig. 3. Sample age-sex distributions for different 

types of localities. Smoothed ABS Statistical Local 
Area data 2001 census for rural (Orbost), 
metropolitan (Hobson’s Bay-Altona) and city (Inner 
Melbourne)   
 

As in many countries, in Australia there are 
relatively more children and older people in rural 
areas. Fig. 3 depicts typical Australian age 
distributions ds,t (age) of subpopulations for sex s and 
locality type t for inner city (inner Melbourne), 
metropolitan (Altona) and rural (Orbost) localities.  
Here, ds,t (age) = N(age, s, L)/ N for the 
subpopulation of sex s in the (metropolitan or rural 
type) locality L with total population N.  

From this data, less than 1% of a locality’s 
population has the same age and sex except in inner 
city areas. In general, therefore, if a locality has 
20,000 people, say, then at most 200 will be in the 
same age-sex cell and so from Fig. 1 the probability 
that a person is uniquely identified by birthday, age 
and sex is more than 0.6. If a locality has 8000 
people, then that probability rises to 0.8; or for 3000 
people, over 0.9. 

A more accurate estimate of the expected 
proportion of unique DoB/sex/locality identifiers as a 
function of locality population N, for rural or 
metropolitan locality type t, can be obtained by 
summing over each age-sex cell, viz,  

 
∑A =0 to 110  p1(dmales,t (A)*N) + p1(dfemales,t (A)*N).  (3) 
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Here, ds,t (A) * N is the expected number of 
individuals of sex s and age A in a locality of type t 
and population N  so that  p1(dmales,t (A)*N)  is the 
expected proportion of males with unique birthdays, 
and hence with unique birthdate/sex/locality 
identifier.   

 

 
 
Fig. 4. Proportion of females with unique DoB by 

population and predicted proportion  
 
The difference between rural and metropolitan 

age distributions has very little effect on the expected 
proportion of unique DoB in the overall population 
of a locality, although it does impact on the age 
groups in which those birthdates are most likely to 
occur. So Fig. 4 depicts the result of applying 
equation (3) to get the predicted proportion against 
population size for either metropolitan or rural 
localities. Here the localities are postcode areas, a 
common way of identifying locality. 

Also shown in Fig. 4 are actual percentages of 
female individuals for whom DoB is a unique 
identifier within a locality, as a function of locality 
population. Even in the largest postcode areas have 
over one third of people uniquely identified by the 
demographic information.  Outliers for which the 
proportion of unique identifiers is significantly below 
the prediction may be identified as localities whose 
population tends to congregate within some age 
groups relative to the generic distributions. 

Fig. 5 shows the actual proportions of females 
who share their DoB with others in their postcode, 
again as a function of population of postcode.  This 
figure shows that the actuals accord with the results 
suggested by Fig. 1.  Again, the results for males are 
similar. 

 

 
Fig. 5. Proportion of females in postcodes who 

share DoB identifiers.  Also shown is predicted 
proportion of females with unique DoB, which, from 
Figure 4, is a good estimate of actuals. 

 
 If sex is taken into account, these figures indicate 

that 95% of the individuals in a locality are expected 
to be uniquely identified by DoB and sex when the 
locality has a population of about four thousand. If 
certain age groups are of interest – say, those over 60 
-- then the number differs. In the case of over-60s, a 
local population of eight to ten thousand may still 
give an expected 95% unique match, provided the 
local distribution accords with the generic 
distribution.   As noted, Sweeney’s analysis of US 
census data by zip code concerned localities varying 
from hundreds to tens of thousands. 

 
 

4 Conclusion 
 
This article assumed that data are error free, that an 
individual’s DoB/sex/locality identifier is fixed, and 
that individuals are uniquely identified in each of the 
two datasets.  Our analysis indicated that an age/sex 
cell population of around 20 is then required for 95% 
of individuals in a given locality to be uniquely 
identified by DoB and sex, and a population of 
around 1100 to reduce this to 5%. This translates 
roughly into a locality population of 4000 for 95% 
identification, and a population of 22,000 for 5% 
identification.  In an actual Australian dataset, around 
95% of individuals had a unique birthdate at 
population sizes of 2000, or 4000 if sex is included. 
More detailed modelling involving likely population 
distributions showed that if half of the total 
population was in P2 then 7-8% of these individuals 
would not have unique DoB/sex identifiers in a 
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locality size of 4000, and so would be discarded 
under a matching strategy that did not tolerate any 
errors.  

Reducing the expected number of uniquely 
identified individuals to less than 0.1% requires 
localities with populations of half a million or more.   

Analysis of the likelihood of matching across 
datasets on a set of attribute values requires a detailed 
knowledge of the underlying multivariate 
distributions, as this study has indicated. Such 
distributions may be available for attribute sets such 
as DoB, sex and locality, but because the form of the 
distributions can vary greatly, care must be taken in  
generalising results 
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