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ABSTRACT
First we devise an algorithm for finding joins in BCPO’s
given a set of upper bounds as seeds for the search. Sec-
ondly, simple tests are performed to assess the possibil-
ity of an increase in efficiency as a result of having the
seeds as a starting point. Finally, we briefly consider join-
computation by first finding some arbitrary upper bounds
and subsequently use them as seed to the algorithm de-
scribed above.
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1 Introduction

There is a widespread use of ordering relations in
computer- and information sciences, both in theory and ap-
plications. In addition comes a rich selection of applica-
tions owing to the great number of other disciplines that
make use of such structures. Accordingly, the computer
representation and processing of ordering relations has re-
ceived much attention [1, 2, 7, 8, 9, 12, 13, 14].

Often, the approach to ordering relations is intuitive
and informal, with no detailed account of the kind of struc-
ture in question. Take for instance the wealth of ’hierar-
chies’ found in the literature which lack a precise defini-
tion. When specified, we find that they sometimes amount
to trees [10] or even total orders [14], but typically they de-
scribe something between preorders [12] and lattices [11].

We shall concentrate on the structure used in [2, 3, 4,
8]: The bounded complete partial order (BCPO) is more
restricted than pre-orders, but not quite a lattice. The oper-
ations of prime importance includes Join and Meet. These
are almost entirely dual operations so we will discuss joins
only.

Specifically we shall explore the situation in which
the operations can be seeded. That is, when extra infor-
mation is available and might be exploited. In the case of
the join, such seeds could be in the form of known upper
bounds. We focus our attention on the use of seeds and
do not consider how such information may have become
available, whether it is collected from external sources, the
result of guessing, heuristics or some other process.

The different kinds of join-algorithms are sensitive to
the BCPO in question. Anyhow, it seems possible that the
use of seeds could better the performance. We shall try to

shed light on this question.

2 Some basics

We assume the reader is familiar with the basic notions con-
cerning partially ordered sets1 and the standard terms that
accompany them and only summarise some notation and
terminology.

We write 〈A,≤〉 to express that the set A is partially
ordered by the relation ≤⊆ A×A. As usual x < y is short-
hand for x ≤ y and x 6= y. We let Min≤(X) and Max≤(X)
denote the sets of minimal and maximal elements of a set
X ⊆ A. If X has a unique minimal element we refer to
it as the least element, and denote it by min≤(X). Simi-
larly, when a greatest element of X exists it is denoted by
max≤(X). Xu denotes {a |∈ A, x≤ a for all x ∈ X}, i.e. the
set of upper bounds for X .

We say that a′ is an upper cover for a if a < a′ and
there is no a′′ ∈ A such that a < a′′ < a′. Likewise, a is a
lower cover of a′.

Two elements a and a′ are said to be comparable iff
either a≤ a′ or a′ ≤ a. For any a ∈ A we define the down-
set of a, to be the set {x | x ∈ A,x ≤ a} and denote it by
D(a). Similarly the up-set of a is defined by U (a) = {x |
x ∈ A,a≤ x}.

A subset S of A is said to be consistent if every finite
subset of S has an upper bound in A. We shall be concerned
with cases where A is finite and will then use the term con-
sistent about any subset of A that has an upper bound. We
adopt the convention of letting tS denote the least upper
bound of S (provided, of course, it exists). We treat t as a
partial function with signature P(A)→ A and refer to it as
the join-function.

For subsets X and Y of A we define the segment
bounded by X and Y , denoted by Seg≤(X ,Y ), to be the
set {a | a′ ≤ a ≤ a′′ for some a′ ∈ X and a′′ ∈ Y}. We re-
fer to X and Y as the lower and upper boundaries of the
segment, alternatively the floor and ceiling. An element
a ∈ Seg≤(X ,Y ) is a hub in the segment iff it is both a lower
bound for Y and an upper bound for X . Note that a segment
does not necessarily have a hub.

A covering-sequence is of the form a0a1a3 . . . such
that every ai+1 is an upper cover of ai. The functions
f irst(σ) and last(σ) denotes the first and last elements of

1Otherwise, see for instance Grimaldi [6] for a textbook introduction,
or Davey and Priestley [5] for a comprehensive exposition.
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the sequence σ . The relation a~∈σ holds iff the element a
occurs in the sequence σ . The empty sequence is denoted
by ε , while a a σ denotes the sequence resulting from ap-
pending a in front of the sequence σ . Seq≤(X ,Y ) denotes
the set of covering sequences σ for which f irst(σ)∈X and
last(σ) ∈ Y . Obviously, a ∈ Seg≤(X ,Y ) iff a~∈σ for some
σ ∈ Seq≤(X ,Y )

We adopt Carpenters’ definition [2] of BCPOs.

Definition 2.1 A bounded complete partial order (BCPO)
is a partial order 〈A,≤〉 in which every consistent subset of
A has a least upper bound. In particular, the empty set is
regarded as consistent, having a bottom element as its least
upper bound.

Compare the BCPOs with the so called consistently com-
plete CPOs [5] and you will find that they amount to the
same thing.

Following Carpenter, we restrict our attention to finite
BCPO’s, and refer to ≤ as the subsumption relation. I.e. if
x≤ y we say that x subsumes y.

3 Computing joins from upper bounds

Suppose a set X ′ of upper bounds for X is already known,
then the search for tX can be confined in two obvious
ways.

First, tX must be contained in the intersection of the
down-sets of all x ∈ X ′. This is of course so since tX sub-
sumes all upper bounds for X . Clearly, it will suffice to
consider the down-sets for only the minimal elements of
X ′, since an element subsumes all members of X iff it sub-
sumes the minimal elements of X .

Secondly, tX must lie in the segment bounded by X
and X ′, since it is subsumed by all elements in X and sub-
sumes all upper bounds for X . Clearly, the segment will
still contain tX if these boundaries are trimmed down to
Max≤(X) and Min≤(X ′) respectively.

Note that within the limits given by these two restric-
tions, there may still be elements that are not upper bounds
for X . The point is that the search for tX can be confined to
a smaller space. So, having reduced the search-space, tX
can be found by extracting the remaining upper bounds for
X , and selecting the least among them. Hence, we arrive at
the following:

Lemma 3.1 Let 〈A,≤〉 be a BCPO and suppose X ⊆ A is
consistent. Then, for any X ′ ⊆ Xu:

tX = min≤(Xu ∩ Seg≤(Max≤(X),Min≤(X ′)) ∩
⋂

x∈Min≤(X ′)
D(x))

Our goal is to refine this observation into an algorithm
for computing tX given some arbitrary set X ′ of upper
bounds for X . Let us focus our attention on the segment
Seg≤(Max≤(X),Min≤(X ′)), and identify the joins within.
The following observations tell us what to look for in a seg-
ment.

Lemma 3.2 Let 〈A,≤〉 be a BCPO. Let X and Y be non-
empty subsets of A. If Seg≤(X ,Y ) has hubs at all, then tX
is the least hub.

Proof Assume that Seg≤(X ,Y ) has a hub h. By definition,
h is an upper bound for the lower boundary X , that is, X
is consistent so tX exists, and subsumes h. Being a hub h
also subsumes all elements of Y , then so does tX . Hence,
tX is a member of the segment, and a hub. Since every hub
is an upper bound for X , tX is the least hub in Seg≤(X ,Y ).

Lemma 3.3 Let 〈A,≤〉 be a BCPO. Let X and Y be non-
empty subsets of A. If Y ⊆ Xu then Seg≤(X ,Y ) has a hub.

Proof Assume Y ⊆ Xu. I.e. all elements of Y are upper
bounds for X . Then tX exists and subsumes them all.
Hence tX is also a lower bound of Y and thus, a hub.

This gives us the following clue to finding joins:

Corollary 3.1 Let 〈A,≤〉 be a BCPO. Let X and Y be
non-empty subsets of A. If Y ⊆ Xu then tX = min≤({a |
a is a hub in Seg≤(Max≤(X),Min≤(Y ))}).
Proof This follows directly from Lemmas 3.3 and 3.2 since
the segment between the boundaries X and Y obviously
is the same as the segment bounded by Max≤(X) and
Min≤(Y ) respectively.

Consequently, the hunt for a join consists in computing the
segment, finding the hubs and pick the least among them.

We have already noted that the members of
Seg≤(X ,Y ) are precisely those that occur in the covering-
sequences in Seq≤(X ,Y ). Working with Seq≤(X ,Y ) in
stead of the segment directly has advantages since the
covering-sequences can readily be used to find the hubs as
well. The idea is to construct from the sequences, a relation
lb ⊆ Seg≤(X ,Y )×P(Y ) such that lb(a,Y ′) holds iff Y ′ is
the greatest subset of Y for which a is a lower bound.

The actual program would naturally have to build a
suitable representation of the relation lb but we do not go
to this level of detail. Instead we view relations as sets of
tuples in the traditional way.

In the following algorithm, LB and S are (updatable)
set variables. Upon termination LB will hold the relation
lb.

LB← /0; {Initialize LB}
for each σ ∈ Seq≤(X ,Y ) do

for each a~∈σ do
LB← LB∪{(a, /0)}

end for
end for{Initialization done}
for each σ ∈ Seq≤(X ,Y ) do

for each a~∈σ do
Locate (a,S) in LB;
S← S∪{last(σ)};

end for
end for
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There is a dual algorithm for computing a relation ub ⊆
Seg≤(X ,Y )×P(X) such that ub(a,X ′) holds iff X ′ is the
greatest subset of X for which a is an upper bound.

Now we can apply corollary 3.1 to specify an algo-
rithm for computing tX from a set Y of seeds, i.e. arbi-
trary upper bounds for X : Given the relations lb and rb cor-
responding to Seq≤(Max≤(X),Min≤(Y )), a hub is an ele-
ment h for which both lb(h,Min≤(Y )) and ub(h,Max≤(X))
hold. Provided that these relations are represented in a suit-
able way, for instance by means of association lists, all the
hubs in the segment can easily be extracted. Then, picking
the least among them will produce tX . (A special case will
have to be made for the instance t /0 = ⊥ since our proce-
dure requires X to be non-empty.)

It remains to determine how Seq≤(X ,Y ) is to be
computed. A straightforward approach is to generate the
covering-sequences backwards, starting with the elements
of the upper boundary Y and expanding each such sequence
with a lower cover of the last added element. Should there
be several such lower covers, the sequence is duplicated.
Each sequence is expanded downwards until it reaches the
lower boundary X2, or an attempt is made to extend it
beyond ⊥ in which case the generated sequence has by-
passed the lower boundary and should not be included in
the result. In the following pseudo-code for for computing
Seq≤(X ,Y ) SEQ and CHECK are set variables. Upon ter-
mination SEQ will hold the result.

SEQ← /0;
CHECK← /0;
for each y ∈ Y do

SEQ← SEQ∪{y a ε}
end for{Initialization done}
while SEQ 6= CHECK do

CHECK← SEQ;
for each σ ∈ SEQ do

if f irst(σ) 6∈ X then
for each lower cover a of f irst(σ) do

SEQ← SEQ∪{a a σ}
end for

end if
end for

end while
{Drop sequences that have bypassed X}
for each σ ∈ SEQ do

if f irst(σ) 6∈ X then
SEQ← SEQ−{σ}

end if
end for

Because of our confinement to finite BCPO’s, termination
is guaranteed for this, and the previous, algorithm.

2In general, X may contain comparable elements, in which case only
the maximal ones would be included in the result of this algorithm. This
poses no problems since we will only apply it to Max≤(X), cf corollary
3.1

4 Assessment and tests

In the following we shall try to assess the value of bringing
seeds into the picture, when possible. We start by com-
paring our algorithm, referred to as SEED, to a straightfor-
ward seedless algorithm. Initially we compare by means
of (somewhat superficial) judgments of their relative com-
plexities, but lessons from working with join-algorithms
tell us that they are likely to be sensitive to the nature of
the BCPO in question and we will therefore run some tests
in addition.

For comparison we choose the algorithm founded on
the following observation concerning BCPOs:

If X is consistent then tX = min≤(
⋂

m∈Max≤(X)

U (m))

This particular strategy was chosen because of its simplic-
ity, making it easy to implement it faithfully, and for addi-
tional reasons that will become clear later.

We refer to this algorithm as the Maximals Up-set In-
tersection Minimum, MUIM: The task of finding the join
of a set consists in finding its maximal elements, generate
their up-sets, compute the intersection of these up-sets and
finally, search the result for the least element.

Every now and then we rely on the computation of
least elements and sets of minimal elements, etc. Such
algorithms obviously exists and we have left out the de-
tails. In our tests they are performed as simple depth-first
searches in the space spanned by the covering-relation. In
deed, the entire task of computing a join could be seen as
a search-process within the BCPO. On this view, our al-
gorithms serve to reduce the job to searches over smaller
spaces.

Both algorithms operate by confining the attention to
a reduced set of elements: MUIM considers elements of an
intersection of up-sets, while SEED looks for hubs in spe-
cific segments. An important difference is that SEED han-
dles the segment Seg≤(X ,Y ) in terms of the set Seq≤(X ,Y )
of covering-sequences, in which elements can be dupli-
cated many times. On the other hand, no duplicates occur
in the intersection computed by MUIM. Hence, there is a
danger that SEED’s handling of sequences and hubs has
substantial overhead compared to the workings of MUIM.

In order to test this, SEED and MUIM have been run
on the same input, with their performance (in time) mea-
sured for comparison. Specifically, the test comprised 10
BCPOs of varying ’shapes’ from which a total of 10000
joins was picked randomly to be computed by both algo-
rithms. In each instance, a random seed was generated for
the SEED algorithm. The results are in favour of MUIM.
The average running-time ratio (SEED/MUIM) being 1.11.
So, our tests provide no evidence of performance gained
from using seeds in join-computation. However, some
comments are in place here.

As mentioned, join-algorithms can be sensitive to the
’shape’ of the BCPO. For that reason we have used a variety
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of shapes in our test-set but we cannot exclude the possibil-
ity that particular shapes are missing from our experiment.

Secondly, the seeds we have discussed for the compu-
tation of tX are given sets of upper bounds for X . I.e, X
is assumed to be consistent, but normally join-algorithms
will also be used to discover inconsistency. Given an in-
consistent set X , the SEED algorithm can also be used for
this purpose if provided with the seed /0 or, alternatively,
a seed containing the maximal elements in the up-sets of
members of X . However, since we have not specified the
origin of seeds, we can only assume whether or not the in-
formation they hold is perfect with regard to consistency. A
full discussion of this matter should consider different de-
grees of quality of the given information and correspond-
ing strategies for producing suitable seeds that can detect
inconsistencies. However, we disregard this debate and fo-
cus only on consistent sets. Technically, we circumvent the
problem by using BCPOs with top elements in our test, i.e.
they are all lattices.

Finally, a particular join could have several alternative
seeds. It seems obvious that their respective quality may
vary. A random sample of seeds may involve bad ones and
this may have affected our test. This brings us to the ques-
tion of whether making an effort to find the seeds would
pay off.

4.1 Finding some upper bounds

Given Corollary 3.1, it is clear that any algorithm for find-
ing upper bounds will give rise to an algorithm for comput-
ing joins. Upper bounds can be accounted for in terms of
up-sets:

b ∈ Xu iff b ∈
⋂

x∈X

U (x)

Accordingly, the up-sets provide the basis for a very
straightforward algorithm for finding upper bounds.

The covering relation induces layers in the up-set of
an element x∈A in the sense that x itself constitutes the bot-
tom layer and, on any layer, the next layer consists of the
upper covers of the elements on the present layer. Now, an
algorithm for finding upper bounds for a set X would pro-
ceed by simultaneously constructing the up-sets for each
of the elements in X by iteration upwards layer by layer. If
some elements common to all up-sets is encountered during
this process, the algorithm may present these as the result
and terminate, free of concern for what might be contained
on any remaining layers.

Presumably the reader can easily accept this idea. The
question remains, will this algorithm provide good seeds
for SEED to compute the join? We refer to the combined
algorithm, where seeds are computed first and then fed into
SEED, with the acronym PUSS (Partial Up-Sets Seed). We
shall take a closer look at the performance of PUSS shortly,
but let us first consider why this approach is particularly
interesting with respect to the MUIM algorithm used above
for computing tX .

Whereas MUIM generates entire up-sets for the mem-
bers of X , PUSS generates partial up-sets: The process con-
tinues until some upper bounds have been found, and then
terminated. However, upon termination there is no guar-
antee that the join has been encountered in the process.
Consider the figure below where t{b,c} = l. The upper
bounds m and n lie on a lower layer than l so the sketched
algorithm would terminate as soon as it is recognized that
m and n are elements of U (b)∩U (c). That is, the process
stops before running into l. In this situation, it is clear

 a

 c b

 j

 f e

 k

 nm

 l

 i h

 d  g

that the process can not continue by simply computing the
intersection of the partial up-sets since the join may have
been left out. So, either must the up-sets be completed, like
MUIM does, or the found upper bounds must be used in
some other way, like PUSS. We have not considered other
options for continuing the process, but we observe that the
PUSS algorithm can be seen as an adaptation of MUIM to
incorporate the ideas behind SEED. Therefore MUIM is a
natural choice for comparison.

The example above also illustrates that the partial
up-set algorithm may come up with more than one upper
bound (m and n), and that these may be mutually incompa-
rable. When seen in light of lemma 3.1 this is not necessar-
ily a bad thing. The more elements to begin with, for which
the down-sets are intersected, the greater are the chances of
reducing the search-space. However, this effect does not
carry over to the SEED-algorithm since the corresponding
intersection is not computed explicitly, the way lemma 3.1
suggests.

Returning to the performance of the PUSS algorithm,
it is reasonable to ask whether the computed seeds are bet-
ter than random ones. We investigate this by performing
the same test as earlier, running PUSS on the same sample
of joins and compare its running times with those obtained
by feeding random seeds to SEED. The running time ratio
(SEED/PUSS) is 0.96. Hence, we have no evidence to con-
clude that the quality of the computed seeds makes it worth
while to compute them.
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5 Conclusion

We have investigated the possibility of enhancing the
computation of joins with side-information, if available.
Specifically we have devised an algorithm (SEED) that
tries to exploit seeds in the form of sets of known upper
bounds. Furthermore, this has been extended to the PUSS
algorithm which first computes some seeds which are then
passed on to SEED. We have run tests comparing their per-
formance to a seedless algorithm. Although the results pro-
vide only indications of the value of using seeds, they are
not very promising. The successful use of the SEED algo-
rithm seems to rely on the availability of good seeds.
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