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Abstract: - A multifractal analysis of wind time series has been applied for two different years, 2003 and 2004. 
These values have been recorded each ten minutes, showing intermittency in their pattern. The MFA was 
performed for each month of each year and also for each whole year. The analysis shows a multiscaling structure 
in consistence with other authors. Differences in the multifractal spectrum are found among months and 
practically non between the two years. These differences are localized in the right side of the spectrum, pointing 
out that further research should be done on the scaling behavior of events of lower frequencies that correspond to 
such part of the spectrum. Base on this type of modeling, realistic simulations for green house systems are 
possible. 
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1   Introduction 
Many time series show pronounced cyclic trends. For 
example, daily temperature data follow an annual 
cycle whose magnitude overwhelms other 
fluctuations; rainfall data in many areas undergoes a 
similar annual cycle of similar magnitude as well as 
wind velocity data (w). 
 
The study of w is aimed at greenhouse control 
(heating and ventilation), since wind velocity 
influences both types of control. Wind increases heat 
losses in winter nights, so it is of interest to regulate 
the heating as a function of wind-speed (w). With 
respect to ventilation, the opening of the windows 
must be reduced with high values of wind velocity 
[8]. This kind of relationship makes the identification 
of patterns in the wind’s behavior very interesting. It 
is therefore desirable to compare the wind speed on a 
given date to the average of the wind speed on that 
date [1, 2]. 
 
In the last few decades there has been an increasing 
recognition that multiplicative cascades combined 
with multiscaling analysis represent extremely useful 
tools for characterizing a variety of geophysical 
signals [5].  
 
Cascade model generate signals by dividing an 
interval assigned a single value into an integer 
number of parts, and assigning each new interval a 
new value, usually some random ratio of the initial 
value. This process is then iterated on each new 

interval, and so on. The resulting data can be 
described by the multifractal formalism [8] and can 
be characterized with the use of multiscaling analysis, 
which determines the dependence of the statistical 
moments on the resolution with which the data are 
examined. In some way, Frich and Parisi [8] 
introduced the idea to understand many geophysical 
time series data as a chaotic process. 
 
A stochastic fractal representation of wind-speed was 
introduced by Schmitt et al. [16] via the notion of 
universal multifractals [11]. Their idea is to represent 
time series as a realization of a Levy process and 
parameterize it via its codimension function, basically 
the left portion of the multifractal spectrum [e.g. 7, 
15]. Whether or not there is a “universal multifractal 
model” remains a relevant topic of search [e.g., 19, 
10]. Even though reasonable looking simulations, 
having intermittency as found in wind-speed and 
rainfall, may be obtained, it is difficult to find 
conditional simulations with such an approach. A 
new procedure for the quantification of geophysical 
phenomena was introduced by Puente [13, 14, 15] 
and it is the fractal-multifractal approach (FM). 
However, fewer works have been published applying 
deterministic fractal interpolating functions or FM 
representation. The basic idea of the FM approach is 
to think of intricate patterns as projections of fractal 
functions, which go through simple multifractal 
measures, and consequently this methodology has a 
deterministic nature [13, 14, 15]. 
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Such analysis has important implications on the 
understanding of wind-speed patterns and shows this 
variable to be more heterogeneous than is usually 
modeled. The aim of this work is to study the 
multifractal nature of this series and to fully 
characterize the dynamical system that support it. In 
this way, it is possible to simulate at high resolution 
(interval of 10 minutes) monthly wind-speed series. 
 
 
2   Multifractal Analysis 
 
 
2.1. Theory 
In this work wind velocity (w) is studied in terms of 
the percentage of frequency distributed at different 
times. Thus, one value may be taken as the w 
fraction, pi, in a certain time “i”. The support of this 
measure is the set of real numbers corresponding to t 
values. Thus, pi can be interpreted as the probability 
of finding velocities of a certain value within interval 
“i”.  
 
The structure of this probability measure p on the 
segment (t0 , tf] may be defined by the scaling 
relationship: 
 

0→∝ δδ α asp     (1) 
 
Where the scaling exponent α is the so-called 
Lipschitz-Hölder exponent, and δ is the length of the 
subintervals in which the total segment is divided. 
However p is spread over the interval in such way 
that the concentration of velocities varies widely and 
a different behavior is observed in different positions 
(i), that is: 
 

0)( )( →∝ δδ α asip i     (2) 
 
which defines an spectrum of values of α that 
corresponds to different spatial positions i. Hence the 
singularity exponent α is a function of the position "i" 
, many sites "i" may share the same exponents when a 
regular covering of size δ is chosen. Therefore, let 
N(α,δ) be the number of sites "i" that share the same 
measure pi , that presents the following scaling 
relationship: 
 

0)(),N( →−∝ δαδδα asf    (3) 
 
Where f(α)-singularity spectrum describes the 
statistical distribution of the singularity exponent α, 

or in other words, counts how often specific values α 
of the singularity strengths occur [7]. 
 
 
2.2. Methodology 
There are several ways to calculate the f(α) 
singularity spectrum being one of them the methods 
of moments explained by Evertsz & Mandelbrot ( 
1992) [6]. 
 
To search for a multifractal structure, following the 
general methodology of Evertsz&Mandelbrot (1992) 
[6] and Feder (1988) [7] , and the specific techniques 
of Chhabra&Jenssen (1989) [4] and 
Meneveau&Sreenivasan (1989) [12], the wind 
velocity data (w) was divided into n intervals of size 
δ (n(δ)) in the value of D. Thus, the mean value of D 
in interval i is Di(δ) and the frequency of the data 
points in that box is ρ i(δ), both being dependent of 
the interval size δ . A normalized measure is defined 
by: 
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and the Hausdorff measure 
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are calculated for a series of diminishing interval 
sizes δ for each series of values of q. A relation 
between f and α is thus established, with q as a 
parameter. 
 
In this case the value of q varies from -2 to +10 with 
an increment of 0.2. The numbers of points used in 
each regression line, for a fixed q, was always 10 
points. In other words the number of subintervals 
achieved was 210 in the monthly study. 
 
 
2.3. Data 
Data used in this study was acquired from the 
climatic station of the Dpto. de Producción Vegetal: 
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Botánica y Protección de Cultivos, placed in the 
experimental fields of the Agricultural School of 
Madrid. Every ten minutes, the station recorded mean 
values of the wind velocity in m/s. This data was 
kindly furnished by Prof. Jose Luis García, from 
Polytechnic University of Madrid, Department of 
Rural Engineering. We used times series data from 
2004 and 2005 (Fig. 1). Thus we handle in each 
yearly analysis a series of 105.408 data points , and in 
the monthly analysis a minimum of 4.176 values 
(February) and a maximum of 4.464. 
 

Figure 1. Wind velocity time series during March and 
April of 2003. 
 
 
3   Results and Discussion 
 
The determination of the multifractal spectrum 
(f(α)) was done for each month separately and also 
for each year. Because the aim of this study was to 
compare the structure presented in the time series, 
the analysis was done with the same methodology in 
the regression analysis needed to get the spectrum. 
In Fig. 2 the results for 2003 year are showed. 
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Figure 2. Mulftifractal spectrum for each month and 
multifractal spectrum of the whole year 2003. 
 

The convex function f(α) varies between months 
pointing out the different richness of the studied 
structure. 
 
One way to see the variations in complexity between 
months is to plot the amplitude (αmax-αmin) reached by 
the spectrum in each one [8, 17, 18]. The months that 
show a lowest complexity are February 03, January 
03, July 03 and April 03. The spectrum for the whole 
year 2003 is contained in the range of the month’s 
spectrums. 
 
The same results are obtained for 2004 year. However 
the months that show higher complexities are different 
than for 2003 year (see Fig. 3). 
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Figure 3. Mulftifractal spectrum for each month and 
multifractal spectrum of the whole year 2004. 
 
In 2004 year, it is June that shows the narrowest 
spectrum. It is also observed that this month presents a 
higher frequency of nulls values as it is reflected by 
the fact that for q=0 the f value is 0.9 . 
 
The overall structure of these time series for each 
year is almost the same (Fig. 4). The changes in 
amplitude of the f(α) singularity spectrum are 
statistically non significant. However, the scaling 
behavior at the right side of the spectrum (for 
negative q values) can be differentiating. 
 
In all the multifractal spectrum showed the 
differences were found always in the range of 
negative of q values, but in the positive q values they 
are very closed pointing out a very similar scaling. In 
many works cited here, non has focus in the 
differences of the spectrum in wind time series. 
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4   Conclusion 
 
Over the last ten years there has been evident in the 
literature a growing interest in fractal and multifractal 
analysis of time series including winds. 
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Figure 4. Mulftifractal spectrum for each year taking all 
the data series. 
 
In terms of modeling wind time series, and the 
processes they reflect, it is important that we have 
means of usefully characterizing this multiscale 
heterogeneity, being one of them multifractal 
measures. Base on this modeling characterization and 
simulation of the time series can be possible and 
realistic. 
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