
A Viability Analysis of a Secure VoIP and Instant Messaging System on
a Pocket PC Platform

JOSÉ-VICENTE AGUIRRE1, RAFAEL ÁLVAREZ2, JOSÉ NOGUERA3,
LEANDRO TORTOSA4 and ANTONIO ZAMORA5

Departamento de Ciencia de la Computación e Inteligencia Artificial
Universidad de Alicante

Campus de Sant Vicent del Raspeig, Ap. Correos 99, E-03080, Alicante
SPAIN

This work was partially supported by Generalitat Valenciana grant number GV04B-462

Abstract: - We propose a secure full-duplex VoIP and instant messaging system on a Pocket PC platform,
allowing for session key transport using a public-key protocol and encrypted text or voice communication using
a private-key algorithm. The full-duplex VoIP scheme presents good performance for long duration
communication over LAN networks.

Keywords: - cryptography, security, public-key, VoIP, Pocket PC, Needham-Schroeder protocol, AES, RSA.

1 Introduction
Voice over Internet Protocol [2] (also called VoIP,
IP Telephony, Internet telephony, and Digital Phone)
is the routing of voice conversations over the Internet
or any other IP-based network. The voice data flows
over a general-purpose packet-switched network,
instead of traditional dedicated, circuit-switched
voice transmission lines. VoIP is a technology that
has the potential to completely rework the world's
phone systems. Secure [3] VoIP includes a Session
Initiation Protocol [1] with session key transport.

While secure VoIP providers like Skype [9] have
already been around for some time and are growing
steadily, there are few implementations available for
Pocket PC [8]. The Pocket PC platform has very
limited storage and computational resources so a
VoIP scheme, which is always very demanding, can
be difficult to implement with such limitations. If we
consider encryption of all communications, the
computational cost can even be higher than what a
Pocket PC can perform. This is the reason for this
paper: explain the experiences, difficulties and
results regarding the implementation of this kind of
applications on the Pocket PC platform.

All cryptographic algorithms [5] used are
recognized standards in their respective areas [10].
We have chosen RSA as the asymmetric
cryptosystem and AES as the symmetric
cryptosystem. RSA is already implemented in the
Pocket PC cryptographic API, but AES is not
available yet, requiring additional libraries [7] that
were adapted to the high performance requirements
of a VoIP system.

We have chosen C# as the language for the
implementation since we consider that the .NET
platform has a great future and it is a good
opportunity to test the performance even in the non
favourable case of a virtual machine based language
such as C#. On the other hand, all critical
components of the protocol (e.g. AES, RSA) have
been implemented as highly efficient native code
libraries.

The application consists of three parts: session
key transport based on public-key encryption, simple
text message exchange and full-duplex VoIP system.
The session key transport must be easy to use, fast
and secure in its domain. The simple text message
exchange must also be fast and easy to use. The
VoIP system must assure that the computational cost
required for encryption and decryption is not too
high for the intended platform. Voice treatment is
not part of this paper [4], but the VoIP protocol must
be tolerant to connection losses in the network and
resynchronizations of the two voice threads, since
this kind of errors can occur often in the mobile
domain of the pocket PC platform.

2 Preliminaries
We use the following notation in this paper:

Y1 | Y2 denotes the concatenation of Y1 and Y2.
k1, k2, … kn are private keys.
KUx is the public key of X.
KPx is the private key of X.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp218-223)

N1,N2…Nn are cryptographically valid random
numbers.
Ek(Y) denotes encryption (e.g. AES) of data Y
using k key.
Dk(Y) denotes decryption (e.g. AES) of data Y
using k key.
PX(Y) denotes public-key encryption (e.g. RSA)
of data Y using party X’s public key. It is the
same as EKUx(Y).
PDX(Y) denotes public-key decryption (e.g.
RSA) of data Y using party X’s public key. It is
the same as DKPx(Y).
SX(Y) denotes the result of applying X’s
signature to the hash or data Y. It is the same as
EKPx(Y).
USX(Y) denotes the result of retrieving signature
Y from the original hash or data. It is the same
as EKUx(Y).

3 Design
In this section we include a basic explanation of the
protocols used in the application.

3.1 Session Key Transport
A well known protocol for session key transport is
the Needham-Schroeder public-key protocol [6].
With this protocol, entity authentication, key
authentication, and key transport are guaranteed with
3 messages.

Let us assume that A and B possess each other’s
authentic public-key (If this is not the case, but each
party has a certificate carrying its own public key,
then one additional message is required for
certificate transport). Then the Needham-Schroeder
public-key protocol (Prot.1) (see Fig.1) is as follows:

(Step 1.1) A → B: PB(N1;A)
(Step 1.2) A ← B: PA(N1| N2)
(Step 1.3) A → B: PB(N2)

The protocol actions:
a) A sends B message (Step 1.1).
b) B recovers N1 upon receiving the message

(Step 1), and returns the message (Step 1.2) to
A.

c) Upon decrypting the message (Step 1.2), A
checks that the key recovered (N1) is the
same as the one sent in message (Step 1.1).
(Provided N1 has not been used previously,
this gives A both entity authentication of B
and assurance that B knows this key.) A sends
B message (Step 1.3).

d) Upon decrypting message (Step 1.3), B
checks the key N2 recovered agrees with that
sent in message (Step 1.2). The session key
may be computed as f(N1; N2) using an
appropriate publicly known non-reversible
function f.

3.2 Voice Transmission
Let us consider two machines, A is the voice origin
and B is the voice destination. When A sends voice
data to B, the transmission is not instantaneous and a
delay occurs. B stores the data received in a local
buffer, so when a number of data k is stored, B starts
to reproduce the stored information. This buffer is
necessary, because the time needed to send the data
is not known exactly. We define recover the buffer
as the process of refilling the buffer with voice data.

The Sample Time is Tm, Tr is the transmission
delay (lapse between recording at origin and
reproduction at destination) and Tp is the processing
time defined in equation (1).

PDA A PDA B

(1) PB(N1;A)

(2) PA(N1| N2)

(3) PB(N2)

B Knows:
KUb: its public key.
KPb: its private key.
KUa: A’s public key.
F(y1,y2): publicly known
non-reversible function

B has to compute:
N2 a cryptographically
valid random number.
F(N1,N2) The session key.

A Knows:
KUa: its public key.
KPa: its private key.
KUb: B’s public key.
F(y1,y2): publicly known
non-reversible function

A has to compute:
N1 a cryptographically
valid random number.
F(N1,N2) The session key.

Fig. 1 Needham-Schroeder public-key protocol

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp218-223)

 Tp = TCrypt + TSend + TDecrypt (1)

The time required to encrypt the recorded data

(measured in Tm units of time) is denoted by TCrypt.
This time is established by A, although it can
theoretically be considered constant. TDecrypt is the
time used to decrypt the data received at the
destination and can also be considered constant.

TSend is the time employed to send the data from
the origin to the destination. The network establishes
this time and, therefore, can’t be calculated at the
origin, but it can, nevertheless, be estimated.

The relation between times is defined in
equations (2) and (3).

 Tp < Tm (2)
 Tr = k · Tm + Tp (3)

The parameter k is the size of the buffer.

Equation (3) is always true, while equation (2), in
some cases, can be false. When this occurs, the data
stored in the buffer is used, guaranteeing the
continuity of reproduction. If this occurs k times it is
called buffer overflow and, if the buffer isn’t
recovered, a silence of duration Tp - Tm time units
will be listened at the destination or, if the buffer is
recovered, the silence will be of Tr time units. If the
buffer isn’t recovered, the next time (2) is false
another buffer overflow will occur. If the buffer is
recovered then it is necessary that (2) is false another
k times for a new buffer overflow to occur.

Two kinds of algorithms for voice transmission
are developed for this article. The first one (Twisted
client-server approach) considers each machine as a
voice server that records and sends to the clients that
are connected. For this approach it is necessary that

each machine works as a voice server and voice
client simultaneously. This is necessary in order to
obtain a real full-duplex communication, but it is
computationally expensive. It also requires a
mechanism to synchronise both threads of
communication.

The second one (client-server approach)
establishes a communication between both machines.
Each time a voice packet is sent, the other machine
replies with the voice packet corresponding to the
same time. Therefore, the synchronization
mechanism is embedded into the algorithm. Also, it
is less expensive computationally.

4 Implementation
We improve the memory management of the player
and recorder classes included in the public library
OpenNETCF [7]. The main functions analysed in
this application follow next.

4.1 Session Key Transport
Needham-Schroeder public-key protocol
implementation (Prot.2):

(Step 2.1) A → B: PB(N1|IDA|Alg|sizeKey)
(Step 2.2) A ← B: PA(N1| N2)
(Step 2.3) A → B: PB(N2)

The algorithm defined in this design is used for

the implementation of the session key transport.
Fixed sizes for the Keys, secrets and other variables
involved in the algorithm are needed for the
implementation. The sizes used are as follows:

• Secrets N1 and N2 are of 16 bytes of length
(128 bits) each one.

T m

Voice origin

Voice destination

T p

T r

Fig. 2 Voice transmission diagram

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp218-223)

• ID (13 bytes) identifies each machine.
• Alg (1 byte) identifies the algorithm used for

encryption.
• sizeKey (2 bytes) is the size of the key used

in Alg.

RSA is the public key system used for
encryption and decryption. Since all packets sent in
the session key transport, are not bigger than 32
bytes, no fragmentation is needed. This restriction
defines the size of the rest of the variables.

Secrets N1 and N2 are the random numbers used
to create the session key and 16 bytes for each one is
the biggest size possible to avoid RSA packet
fragmentation.

Alg and sizeKey are set to the minimum size
required and the rest of bytes are for ID. With this
distribution we have 2104 possible machines, 28

possible encryption algorithms and a maximum
possible key size of 216 bits.

The session key is computed as f(N1; N2). Where
f(N1; N2) is the function that concatenates N1 and N2
and gets bytes from N1.length – (Key.length/2) to
N1.length + (Key.length/2)

4.1.1 Client side algorithm

a) A encrypts, with B’s public key, message
(Step 2.1), and sends it to B.
b) A receives message (Step 2.2) and decrypts it
with its private key.
c) Upon decrypting message (Step 2.2), A
checks that the key N1 recovered agrees with that

sent in message (Step 2.1). (Provided N1 has
never been used previously, this gives A both
entity authentication of B and assurance that B
knows this key.)
d) A sends B message (Step 2.3).
e) The session key is computed as f(N1; N2).

4.1.2 Server side algorithm
a) B receives message (Step 2.1) and decrypts it
with its private key.
b) B recovers N1 upon receiving message (Step
1), and returns message (Step 2.2) to A.
c) B receives message (Step 2.3).
d) Upon decrypting message (Step 2.3), B
checks that the key N2 recovered agrees with that
sent in message (Step 2.2).
e) The session key may be computed as f(N1;N2)

4.2 Text Transmission
In this application, text transmission consists of
encrypting text with the session key and sending it to
the destination machine.

Each machine is always a text message server,
waiting to receive a text message from a client. At
the same time, each machine is a client that can send
text to another machine if they have interchanged a
session key.

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

40 140 240 340 440 540 640

Bytes sent

Seconds
Tm TCrypt + TDecrypt Tsm Cut Lines Tse

Fig. 3 Time variations in size increments

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp218-223)

4.3 Voice Transmission
In this application, voice transmission consists in
sending voice data encrypted with the session key
and receiving voice data from another machine and
decrypting it. Voice is recorded and stored using the
standard WAV format which has a header that
permits storing information about sound format (bits,
channels, frequency). In this version, sound format is
constant, but a good enhancement could be
implementing dynamic sound format.

When voice connection between two machines
is activated, the client machine sends a
synchronization byte. After this byte is received, at
the same time, the two machines start a record
process that records voice blocks of 576 bytes (set by
experimentation). These blocks are stored in the send
buffer, which is cyclical and has 4 elements (set by
experimentation). This limitation prevents that slow

networks will not increase the delay between voice
recording and playback (tr). If a network is too slow
for sending the voice blocks fast enough, then a jump
in reproduction is heard in the target machine. This is
caused by the cyclical buffer. Another process sends
the voice blocks to the destination machine. To do
this, there are two approaches.

4.3.1 Twisted client-server approach
In this approach, each machine is a voice server that
receives voice data from the clients that are
connected and plays back the sound. For this
approach it is necessary that each machine works as
a server and client simultaneously. This is similar to
text transmission, only that more bandwidth is
required. This is the reason why this approach
obtains catastrophic results on Pocket PC systems
with WiFi communication. A great number of

0

1

2

3

4

5

6

8000 8500 9000 9500 10000 10500 11000 11500

Time (Ticks)

k

Fig. 4 Buffer state

 Lost packets in twisted client-server approach

0

5

10
15
20
25

1 3 5 7 9 11 13

Seconds

 Lost packets in client-server approach

0

1

2

3

4

5

6

1 6 11 16 21

Hours

Fig. 5 Lost packets Fig. 6 Lost packets

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp218-223)

collisions occur and a big delay is produced in the
communications. Half-duplex communication works
fine with this approach, but full-duplex
communication is not possible.

4.3.2 Client-server approach
The second approach establishes a
communication between the two machines. Only
one acts as a server and the other is the client. In
this communication each time a machine sends a
voice packet, the other machine replies with the
corresponding packet to the same time.
Therefore, the synchronization mechanism is
embedded into the algorithm. Finally, there is a
process that plays back voice blocks. This process
gets data from the received buffer and plays it.

The voice blocks size and send buffer length are
parameters set by experimentation.

 Tp = TCrypt + TSend + TDecrypt (4)
 Tm = T(wav, nwav) (5)
 Tp < T(wav,nwav) (6)
 nwav = 11025 · Tm in bytes (7)
 Tr = k · Tm + Tp (8)
 nwav = nsend – 48 in bytes (9)
 Tsm = Tm – (TCrypt + TDecrypt) (10)
 Tse < Tsm (11)

We have a function T(wav, n) that returns the

duration time of the WAV data. This time is always
equal to Tm (Sample Time). As we see in the design,
Tp has to be less than T(wav,n) in the average case
(6). Tp and T(wav,n) are related by the parameter n,
and n is related to Tm and the WAV format. If Tm
increases then n increases as well, and if we choose a
better WAV format then n increases too. We choose
the WAV format to be 8 bits, mono and 11 kHz; this
is a small format and has phone quality. With this
format we have the relation (7) between Tm and n.
Finally we want Tr to be as small as possible, and k
to be as big as possible. We can take Tm smaller, but
we have to consider the restriction of Tp, that must
include the encryption, transmission and decryption
of the n bytes in less time that Tm.

After this, nsend is set to 576 bytes so, Tm is 52
milliseconds. This is set by experimentation (see
Fig.3). Tse is the estimated send time and Tsm is the
maximum send time. The relation (11) is true with a
nsend higher than 562 and nsend is set to 576 that
provides Tm a bit bigger than a 1/20 of second with
good performance results.

Finally, k is chosen to be four, so Tr is less than
260 milliseconds. With this value we have a buffer a
bit bigger than 1/5 of second. This value of k

produces good performance in our case of study (see
Fig.4). So, Tr is less than a ¼ of second, and that is a
good enough value.

With this values and a good WiFi connection
between machines, minimum loss of packets was
detected in a communication with duration longer
than 24 hours (see Fig.5 and Fig.6). No loss of audio
performance was detected either.

5 Conclusion
Observing the results, we can conclude that Pocket
PC platform is good enough to implement the
hardest part of a secure VoIP and instant messaging
system. This application allows session key transport
using a public-key protocol and encrypted text or
voice communication using a private-key algorithm.
The full-duplex VoIP scheme has good performance
for communications with duration longer than 24
hours and no degradation of the system was detected.

The application can be extended to more than
two machines [8] using Windows CE certificates for
the session key transport. A more complex system
for voice treatment could also be advisable. But all
enhancements are only add-ons that do not change
the computational requirements shown in this paper.

References:
[1] Handley, M., Schulzrinne, H., Schooler, E.,

Rosenberg, J., Session Initiation Protocol (SIP).
The Internet Society 1999

[2] H.323v5, ITU 2003
[3] Koblitz, N. A Course in Number Theory and

Cryptography. Springer-Verlag. 1987.
[4] Linden, J., Achieving the Highest Voice Quality

for VoIP Solutions, Global IP Sound. 2004
[5] Menezes, A., van Oorschot, P., Vanstone, S.,

Handbook of Applied Cryptography. CRC Press.
Florida. 2001.

[6] Needham, R., Schroeder, M., Using encryption
for authentication in large networks of
computers, Communications of the ACM,
21(12):993-999, 1978.

[7] OpenNETCF http://www.opennetcf.org/
[8] Salman A., Baset and Henning Schulzrinne, An

Analysis of the Skype Peer-to-Peer Internet
Telephony Protocol. Department of Computer
Science Columbia University. Technical Report
CUCS-039-04, 2004

[9] Skype http://www.skype.com/
[10] Stallings, W. Cryptography and Network

Security. Principles and Practice. Third Edition.
Prentice Hall. New Jersey. 2003

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp218-223)

