
Numerical solution of a singularly perturbed two-point
boundary-value problem using collocation

M. F. PATŔICIO
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Abstract: In this paper we study a class of numerical methods to solve a singularly perturbed two-point boundary
value problem. Our schemes arise as result of choosing an appropriate basis for the solution, as well as making
use of collocation. It is possible to obtain arbitrarily high-order methods. Wenote that, in some cases (constant
coefficients), we obtain the exact solution. Particular attention is paid to time-independent problems, being time-
dependent problems also included.
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1 Introduction
Consider the singularly perturbed problem (SPP)

{

Lu := −ǫu′′ + b(x)u′ + c(x)u = f(x),
u(0) = u(1) = 0, x ∈]0, 1[,

(1)

with b(x) > 0, c(x) ≥ 0, 0 < ǫ ≪ 1 andf(x) ≥ 0.
It is well known that the boundary layer for this

problem is close tox = 1.
Solutions of singularly perturbed boundary-value

problems change abruptly in layers. Consequently,
discretization methods based on equidistant meshes
have difficulty in representing these solutions, in par-
ticular when we associate central or upwind differ-
ences to those meshes.

A useful approach for solving problem (1) is
to consider nonuniform meshes together with finite-
differences. Within these types of meshes we can re-
fer piecewise-uniform meshes (for example, Shishkin
meshes [14] and Bakhvalov meshes [2]). Other au-
thors propose meshes that are built adaptatively by
equidistributing a monitor function (see, for example,
[3], [4], [7] and [13]).

For problem (1) withb(x) = f(x) = 1 and
c(x) = 0, we determined the numerical solution using
an uniform grid (with step-sizeh), and with a Shishkin
nonuniform mesh. In both cases, the derivatives were
discretized using central differences. For different val-
ues of parameterǫ, we present in table 1 the error –ℓ2

– of the obtained solution.
A brief comparison between the 3rd and 4th

columns of table 1 allows us to conclude that the use

Table 1: Errors (ℓ2) obtained by central finite differ-
ences.

ǫ h Uniform mesh Shishkin mesh
10−2 10−1 9.195 × 10−1 1.022 × 10−1

10−2 4.457 × 10−2 1.626 × 10−3

10−3 1.319 × 10−3 6.638 × 10−5

10−3 10−1 1.020 × 101 1.373 × 10−1

10−2 8.945 × 10−1 1.423 × 10−2

10−3 4.457 × 10−2 1.505 × 10−4

10−4 10−1 1.107 × 102 1.411 × 10−1

10−2 3.536 8.395 × 10−2

10−3 8.945 × 10−1 1.424 × 10−3

10−4 4.457 × 10−2 1.403 × 10−5

of a nonuniform Shishkin mesh produces more accu-
rate results (for the same corresponding values ofh
andǫ) than the ones obtained with an uniform mesh.
Notice, however, that this procedure, although quite
accurate, has a high computational cost.

At it is known, (see [6]), the set

B = {Φi, Ψi, i = 0, . . . p} , p ∈ IN, (2)

is a basis for the solution subspace of equation (1),
whereΦi(x) = xi, Ψi(x) = xie

1

ǫ
g(x) (i = 0, . . . , p),

andg(x) =
∫ x
1 b(s) ds.

In this work we will use some elements of (2) to
approximate the solution of equation (1).

Section 2 will be dedicated to the computation of
the discrete solution. Some particular attention will
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be paid to the case wherec(x) = 0 and b(x) = b
(constant) for allx ∈ [0, 1].

In section 3 we study the error of the approxima-
tion. For such purpose, we will use the residual of the
obtained solution. In many cases we obtain the ex-
act solution, and in the other cases a arbitrarily high-
precision solution can be obtained.

The procedure presented in section 2 will be ex-
tended to time-dependent problems in section 4, time
integration being made using a suitable method. Sta-
bility behavior is also studied.

We present, in section 5, some computational as-
pects and an algorithm. Still in this section, some
differential equations will be integrated with the de-
veloped methods, and we present some comparisons
with some classical methods, namely concerning the
error and the computational cost.

2 Discrete Approximation
Consider a uniform grid in[0, 1] generating equally-
spaced pointsxi such thatxi+1 = xi + h. Suppose
that

v(x) = A + Bx + Ce
1

ǫ
g(x) (3)

is an approximation to the solution of (1) on
[xi−1, xi+1]. At grid-point xi, we havevi = A +

Bxi + Ce
1

ǫ
g(xi). Denote by θi+1

i the quantity
∫ xi+1

xi
b(t) dt. We then haveg(xi+1) = g(xi) + θi+1

i .
Using the values ofvi−1, vi andvi+1, we can write

C =
1

Di

[

(vi+1 − 2vi + vi−1)e
−

1

ǫ
g(xi−1)

]

, (4)

whereDi := e
1

ǫ
θi+1

i−1 − 2e
1

ǫ
θi
i−1 + 1. Therefore,

vi+1 − vi−1 = 2Bh + Ce
1

ǫ
g(xi−1)

(

e
1

ǫ
θi+1

i−1 − 1
)

,

and thus

B =
1

2h

[

(vi+1 − vi−1) − Ce
1

ǫ
g(xi−1)

(

e
1

ǫ
θi+1

i−1 − 1
)]

.

(5)
Now, let bi = b(xi), ci = c(xi) andfi = f(xi)

for all i. Using the fact that−ǫu′′ + biu
′ + ciu = fi,

and after some algebraic manipulation, we can write

σi

Di
δ2vi +

1

2h
(vi+1 − vi−1) +

ci

bi
vi =

fi

bi
, (6)

whereδ2vi := vi+1 − 2vi + vi−1 and

σi :=

(

1

ǫ
− 1 −

1

ǫ
bi

)

e
1

ǫ
θi
i−1 −

1

2h

(

e
1

ǫ
θi+1

i−1 − 1
)

.

If we approximate functionb by a constant in
[xi−1, xi+1) (sayβi = b(x∗) for somex∗) we have
g(x) = βi(x− 1). Repeating the above procedure for
equation (1) – note thatb(x) is not constant here –, we
obtain the method

ρi

(

1 − bi

βi

)

eρi − e−ρi
δ2vi+

bi

βi

(

1 − eρi

eρi − e−ρi
vi−1 + vi +

e−ρi − 1

eρi − e−ρi
vi+1

)

=
h(eρi − 1)

bi(eρi + 1)
fi,

(7)
whereρi := βih

ǫ .
As a particular case, ifb(x) is constant over

the interval [xi−1, xi+1) (say b(x) = bi, x ∈
[xi−1, xi+1)), thenβi = bi, θi

i−1 = bih and therefore
method (6) can be rewritten as

1 − eρi

eρi − e−ρi
vi−1 + vi +

e−ρi − 1

eρi − e−ρi
vi+1+

+
h(eρi − 1)

bi(eρi + 1)
civi =

h(eρi − 1)

bi(eρi + 1)
fi,

(8)

whereρi := bih
ǫ .

We note that equation (8) is the Il’in-Allen-
Southwell scheme (see [1]).

3 Error Analysis. Some Properties

In this section we will considerc(x) ≡ 0, although
analogous results could be established ifc 6= 0.

3.1 Positivity

In pollution-related problems, for example, it is im-
portant to assure that the solutions are positive. Fol-
lowing the approach presented in [11], it is easy to
establish this property for method (8):

Theorem 1 Method (8) applied to problem (1) with
c = 0 produces a positive solution.

Proof: It suffices to note that (8) gives origin to a lin-
ear system whose matrix can be decomposed in the
form I − T , whereT is tridiagonal. SinceT ≥ 0 and
a vectorw such that(I −T )w > 0 exists, the result is
straightforward. �
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3.2 Error
Error analysis will be done using the residual. Let

R(x) := Lu(x) − f(x), (9)

and denote bye the error (difference between the ex-
act and the approximate solution).

Theorem 2 Letu be the exact solution of problem (1)
andR1 andR2 the residuals associated with two ap-
proximationsw1 and w2, respectively. IfR1(x) >
R2(x) thene1(x) > e2(x), wheree1(x) = u(x) −
w1(x) ande2(x) = u(x) − w2(x).
Proof: This result follows directly from the fact that
L(e1 − e2) > 0 and from the maximum principle.�

We can also establish the following result, the
proof being straightforward.

Theorem 3 Consider again problem (1). The numer-
ical solution,v, obtained with method (7), produces a
residual,R, verifyingR(xi) = 0, for all i. Further-
more, ifc(x) ≡ 0 then, forx̄ 6= xi, we have:

i. R(x̄) = f(xi) − f(x̄) if b is piecewise constant;

ii. R(x̄) = δ2vi

eρi+e−ρi−2
+

+
[

1
ǫ (b(x̄) − βi)e

1

ǫ
βi(x̄−xi) − b(x̄)ρi

h

(

βi

bi
− 1

)]

+

b(x̄)
bi

fi − f(x̄), otherwise.

4 Time-dependent Problem

4.1 The Method
For time-dependent problems, it is possible to adapt
the method we previously obtained using a MOL

(method of lines) approach. Consider problem







ut = −ǫuxx − b(x)ux + f(x), x ∈]0, 1[, t ≥ 0,
u(0, t) = u(1, t) = 0, t ≥ 0,
u(x, 0) = s(x), x ∈ [0, 1].

(10)
As it is well known, in the solution of this

convection-dominated problem we can clearly distin-
guish two different types of regions for eacht. There-
fore, it seems natural to apply an analogous procedure
to what has been done in the time-independent prob-
lem.

We begin by setting up a temporal grid with points
tj = kj, j = 0, 1, . . .. As usual, letun

j ≈ u(xj , tn)

andupx|
n
j ≈ ∂pu

∂xp (xj , tn).
In order to approximate the derivatives ofu we

use the values ofB andC given by (5) and (4), re-
spectively. Obviously, time integration can be done

with a classical method, in particular Euler’s forward
method. Following this approach, we obtain the fol-
lowing method:

un+1
j − un

j = k
(

ǫ uxx|
n
j − b(xj) ux|

n
j + f(xj)

)

,

(11)
where k is the temporal step-size. Lettingn =
0, 1, . . ., we construct the numerical solution of (10).

4.2 Stability Behavior
In order to study the stability of method (11), we re-
placeun

j by ξneiγjh. We can easily (but tediously)
prove that the amplification factor,ξ, is such that

|ξ| ≤ 1 + k|A(ǫ, h)|,

whereA(ǫ, h) < cb, with c > 0 constant (independent
of h andk) andb is such that|b| > b(x),∀x ∈ [0, 1].

According to this result, method (11) produces
solutions whose errors are bounded.

5 Numerical Experiments
In order to illustrate the behavior of the methods pre-
sented in sections 2 and 4, we now present some nu-
merical experiments. Moreover, we present an algo-
rithm that describes the procedure used in both time-
dependent and time-independent problems, the main
purpose of it being the obtention of highly accurate
results, with a rather low computational cost.

5.1 Time-Independent Problem
Consider again problem (1) withb(x) = f(x) = 1
andc(x) = 0. In table 1 we presented some results ob-
tained with classical approaches for solving this prob-
lem. If we integrate the same problem using method
(6), we obtain the errors presented in table 2. Note that
this method (withh much greater than used before)
produces much more accurate results, and the errors
presented in this table are (most likely!!!) round-off
errors...

Table 2: Errors (ℓ2) obtained by method (6).
ǫ h = 0.2 h = 0.1

10−2 1.2 × 10−16 2.6 × 10−16

10−3 1.6 × 10−16 1.4 × 10−16

10−4 2.3 × 10−16 2.1 × 10−16

The errors in table 2 were obtained using the exact
solution.
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5.1.1 Problem 1: b(x) = 1, c(x) = 0, f(x) = e−x

Consider once more problem (1) like above, but now
with f(x) = e−x. If we apply method (6) to solve this
equation, we obtain an approximate solution, whose
error (||u(x) − v(x)||2) we present in table 3.

Table 3: Errors (ℓ2) obtained by method (6) forb(x) =
1, c(x) = 0 andf(x) = e−x.

ǫ h = 0.2 h = 0.1

10−2 0.05097 0.04180

10−3 0.05620 0.05127

10−4 0.05673 0.05222

We note that, in this case, the exact solution is
given by

u(x) =
e−x(1 − e1/ǫ) + ex/ǫ(1/e − 1) + e1/ǫ − 1/e

(1 + ǫ)(e1/ǫ − 1)
.

5.1.2 Problem 2: b(x) = x + 1, c(x) = 0, f(x) =
e−x

Now let b(x) = x + 1, c(x) = 0 andf(x) = e−x

in problem (1). If we considerǫ = 10−3 and apply
method (6) withh = 0.1, we can plot the results in
figure 1.

Figure 1: Exact (red) and approximate (black) solu-
tions for problem (1) withh = 0.1.

As we can see, the approximation is not accept-
able, mainly on[0.8, 1.0]. According to theorem 2,
we know that associated with a large residual we have
a large error. Therefore, we might suspect that over
the interval[0.8, 1.0], the residual is large, being zero
at x = 0.9, according to theorem 3. In fact, if we
compute the residual forx = 0.85 and0.95 (the mid-
points of sub-intervals[0.8, 0.9] and[0.9, 1.0] respec-
tively) we have|R(0.85)| ≈ 0.0315 and|R(0.95)| ≈
0.0305.

According to there results and, more generally, to
theorems 2 and 3, and accepting as a valid criterion
that an approximation over an interval[xi−1, xi+1]
is unacceptable if the residual at pointsxi−1/2 and
xi+1/2 exceed a previously established tolerance (say

|R(xi±1/2)| > δ), we can propose the following al-
gorithm: partition the interval[xi−1, xi+1] and apply
method (6) on[xi−1, xi] and [xi, xi+1], so that the
residual at grid-pointsxi±1/2 becomes zero. This pro-
cedure can be applied to the whole interval[0, 1] or
only near the boundary layer.

Returning to the example, if we setδ = 0.03,
then the residuals atx = 0.85 andx = 0.95 are not
acceptable. Therefore, we will “refine” the grid on
[0.8, 1] and apply again method (6) only on[0.8, 1],
but now withh = 0.1

2 . Doing so (which implies that
we have accepted the previously computed solution
on the interval[0.0, 0.8]), we obtain the plots shown
in figure 2.

Figure 2: Exact (red) and approximate (black) solu-
tions for problem (1) after refinement on[0.8, 1.0].

The algorithm may be applied again with the pur-
pose of improving the numerical approximation in the
boundary layer, or even the approximation all over the
interval.

5.2 Time-Dependent Problem
In this subsection we present some numerical results
for equation (10) and method (11) with initial data

s(x) =

{

sin [10π(0.5x − 0.1)] , 0.2 < x < 0.4
0, otherwise

,

and two different positive sources. The first one
(problem 1) is the exponential sourcef(x) = e−x

2 ,
and the second one (problem 2) is the discontinuous
source

f(x) =

{

1, 0.68 < x < 0.80
0, otherwise

.

In both problems we consideredǫ = 10−3 and
b(x) = 10−1 for all x. We analise the compu-
tational solution for different values oft and com-
pare them with the “exact” solution at the same time-
level, obtained with a refined mesh1. All results
will be presented using the maximum norm, EMAX=
maxj |u(xj) − v(xj)|.

1With h =
1

500
.
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5.2.1 Problem 1: Continuous source

In this problem we usek = 1
10 , h = 1

40 and determine
the solution att = 1, 5, 10. In figure 3 we present
the “exact” and approximate solutions att = 1 and
t = 10.

Figure 3: Exact (black) and approximate (red) solu-
tions att = 1 (top) andt = 10 (bottom).

For a clearer idea of the errors obtained at differ-
ent time levels, we present the results in table 4.

Table 4: EMAX errors for problem 1.
h = 1

40 , k = 1
10 h = 1

100 , k = 1
25

t = 1 0.172 0.071

t = 5 0.080 0.043

t = 10 0.050 0.027

Some Remarks:

1. Some of these results can be compared with the
ones obtained in [12]. Even though the errors are
very alike, the computational cost of the method
we now present is much lower, namely because
we use a fixed mesh, and time integration is done
explicitly. We also note that the errors become
smaller as time increases.

2. The errors corresponding toh = 1
100 andk = 1

25
are included just to obtain a better approxima-
tion.

5.2.2 Problem 2: Discontinuous source

In figure 4 (top) we present the approximate and exact
solution att = 1 obtained withh = 1

40 andk = 1
10 ,

just as it was done in the previous example. We might
suspect that the residual is not being controlled, since
the error is not acceptable, mainly forx > 0.2. It is

therefore useful to use the algorithm presented for the
time-independent problem in this situation.

In order to control the residual and avoid a high
computational cost, we just compute it in some time
levels. If the residual is not less than a previously
established tolerance (δ), we go back to the previous
time level where the residual procedure was success-
ful and recompute the numerical solution with smaller
values ofh and k (for precision and stability pur-
poses, respectively) only on the region where the test
was unsuccessful (large residual). In spatial regions
where the test was done successfully, the solution is
accepted. After that, we can go on with the same val-
ues ofh andk, or we can try to increase them.

We note that this procedure is a natural extension
of what has been done in section 5.1.

If we use this ”algorithm” in this problem, we ac-
cept the solution att = 1 for 0 ≤ x ≤ 0.2 and re-
fine the mesh for other values ofx, usingh = 1

60 and
k = 1

20 . In this case these procedure was done going
back tot = 0 (figure 4 (bottom)).

Figure 4: Exact (black) and approximate (red) solu-
tions att = 1.

For values oft ≥ 2 we tried to increase the values
of h andk (h = 1

25 andk = 1
10 ) and computed the

approximate solution fort = 10 (figure 5).

Figure 5: Exact (black) and approximate (red) solu-
tions att = 10.
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Some remarks:

– The main advantage of the presented scheme is
the fact that it is easy to implement and has a low
computational cost.

– Using more elements of (2), we could obtain
an arbitrarily high-precision solution. This tech-
nique would be similar to the use of extrapolation
that was preformed, for example, in [10].

– Apart from the extension to the time-dependent
problem, this approach can be adapted to the nu-
merical resolution of sets of singularly perturbed
equations. Recently, this problem has been quite
researched (see [8] and [9], for example).
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