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Abstract: The paper describes a way how to model the DC-DC buck converter by means of the so-called generalized 
transfer functions, utilizing both the Laplace and the z-transform operators. The resulting line-to-output and control-
to-output transfer functions and the corresponding frequency responses can model some system behavior more truly 
than the classical s-domain averaged models, including special effects above the Nyquist’s frequency. As an 
example, a concrete SPICE subcircuit is shown together with the results of AC analysis. 
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1   Introduction 
The averaging approach is commonly used for fast and 
economical analysis of switched DC-DC converters [1]. 
A drawback of these methods consists in the frequency 
limitation to the Nyquist’s frequency fswitch/2. Near to 
and above this limit, the simulation ceases 
corresponding to reality.  
     For a more complex description of the dynamic 
features and for monitoring the stability, special 
approximate methods were developed [2] which model 
the influence of switching processes on the loop gain, 
particularly in the frequency region in the vicinity of 
Nyquist’s frequency. However, these methods are 
based on continuous-time modeling by means of the s-
domain transfer functions. That is why the processes 
above fswitch/2 are not modeled properly. 
     In this paper, modeling on the basis of mixed s-z 
description will be described, which overcame the 
above difficulties. The switched DC-DC converter is 
regarded as an analog linear time-varying system, 
where the externally controlled switches are modeled 
by time-varying resistances. To model such systems, 
the so-called generalized transfer functions (GTFs) [3] 
are applied. GTFs are functions of two well-known s 
and z operators, simultaneously describing both the 
continuous-time and the discrete-time behavior of 
switched converter.  
     This study includes a demonstration of the GTF 
approach for line-to-output transfer functions of buck 
switched converter operating in the continuous current 
mode (CCM). However, it is also valid for other types 
of switched DC-DC converters. The first description of 
this method including its programming in MATLAB 
was given in [4]. Here some extensions are made, 
which result in compiling the SPICE macromodel. 

2   GTF of switched DC-DC converters 
The well-known topology of buck converter and the 
switching diagram in Fig. 1 represent a two-phase 
switched circuit, when the active switch S causes by its 
ON/OFF operation inverse states of the passive switch 
D, i.e. OFF/ON. The relative duration of the ON state 
of the active switch with respect to the switching period 
is called duty ratio (D). This quantity is usually 
controlled in dependence on the output voltage, which 
is then stabilized via pulse width modulation.  
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Fig. 1: Buck converter and its switching diagram. 

     After neglecting the nonlinear operation of 
switching devices, the converter can be described in 
each of its switching phases by a linear model with a 
dominant couple of state variables – the voltage across 
the capacitor and the inductor current. 
     Let us consider the following assumptions: linear 
model in each switching phase, continuous conducting 
mode, and constant duty ratio. Input voltage V will 
have a DC component V0 and a superposed AC 
component )(ˆ tv . The aim of the analysis is to obtain 
the frequency dependence of the AC component of the 
output voltage and the other observed signals without 
limitation of the bandwidth of signal )(ˆ tv . 
     Due to the switching processes, the circuit variables 
of switched converters are not smooth time-domain 
functions. According to the theory of generalized 
transfer functions [3], these signals can be represented 
by smooth, so-called equivalent signals, which fulfill 
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the following two conditions: (1) the original and 
equivalent signals have identical values at the sampling 
instances we are interested in (mostly on the boundaries 
of switching phases), (2) the bandwidth of the 
equivalent signals coincides with the bandwidth of the 
input signal. The first condition states that the 
equivalent signals form abstract envelopes of real 
signals. In the case of negligible influence of switching 
processes, there is a good agreement between the real 
signals and their envelopes. The second condition 
enables comparing the equivalent signals and the input 
signal in the frequency domain by means of linear 
theory. In other words, it enables defining the transfer 
functions. 
     Let us observe the converter state by means of 
vector X, which consists – in the simplest case – of a 
couple of state variables VC and IL. All the remaining 
circuit currents or voltages can be obtained by a linear 
combination of these state variables and the input 
voltage. In the following, we will assume a continuity 
of state variables both in the frame of switching phases 
and at transition instances between them. 
     Let us introduce the following notation: 
G1, G2… matrices of natural responses of the converter 
within phase 1 and phase 2, respectively, defined on the 
assumption of zero-input signal v: 

 )()( 1 kTDTkT XGX =+ ,  
 )()( 2 DTkTTkT +=+ XGX ,  (1) 

g1, g2…matrices of converter impulse responses within 
phase 1 and phase 2, respectively, defined on the 
assumption of input signal v as the Dirac impulse, 
operating at the beginning of switching phase, 
H1, H2… vectors of forced responses of the converter 
to constant input signal V0 within phase 1 and phase 2, 
respectively, considering zero initial state: 

 ∫ ==+
DT

VVdDTkT
0

0101 )()( HgX ξξ ,  
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′′

==+
TD

VVdTkT
0
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     Taking into account the above notations and 
assumptions, the switched converter can be described 
by the following equations: 

     End of switching phase 1 – t = kT+DT: 
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     End of switching phase 2 – t = kT+T: 
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     Now consider the input voltage as a sum of DC and 
AC components: 

 ωjseVVv st =+= ,ˆ
0 .  (5) 

     As a consequence of circuit linearity, the steady-
state vector X will be also composed of DC and AC 
terms: 
 steXXX ˆ

0 += .  (6) 

     Taking into account equations (5) and (6), the 
following results can be derived from (3) and (4): 
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     Equations (7) describe two equivalent ways of 
computing the state vector in DC steady state, whereas 
equations (8) and (9) represent state vectors of 
equivalent state signals of the converter, which 
correspond to the state variables after their sampling at 
the end of phases 1 ( 1X̂ ) and phases 2 ( 2X̂ ), 
respectively. In addition to the operator of the z-
transform z=esT, the following quantities figure in the 
equations: 

 ∫ −=
DT

st dtets
0

11 )()(ˆ gH , ∫
′

−=
TD

st dtets
0

22 )()(ˆ gH  (10) 

and are the running Laplace transforms of converter 
impulse responses within phases 1 and 2, respectively. 
These functions generate s-domain poles of converter 
frequency responses. 
     Note that equations (7) for DC steady state directly 
result from equations (8), (9), (10) and (2) for s = 0. 
     Equations (8) a (9) describe generalized transfer 
functions of switched converter. Applying the double 
substitution s = jω, z = ejωT yields line-to-output 
frequency responses for an arbitrary bandwidth, i.e. 
without limitation to one half of the switching 
frequency, as is usual for the procedures published so 
far. 
 
3   Modeling of buck converter 
In the case of the buck converter in Fig. 1, the above 
modeling can be simplified. During switching phase 2, 
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there is no connection between the input signal and the 
state variables. That is why matrix g2 and two vectors 
H2 and 2Ĥ  are zero. 
     To compile a PSPICE macromodel of buck 
converter, all components of Eqs. (8) and (9) were 
derived symbolically with the aid of the SNAP program 
[5], and then they were written in the SPICE language. 
The resulting subcircuit is given in Fig. 2. It models the 
GTF defined by Eq. (8). The modeling was based on 
the following specification of the converter in Fig. 1: 

Ron of both the active and the passive switches are 
identical.  

ESR resistances are considered both for the 
capacitor (RC) and for the inductor (RL). 

     To compute the transfer from the input V to the 
output Vout, the above equations must be completed 
with the output equation for buck converter: 

 )/1/()( loadCLCLout RRIRVV ++=  (11) 

*subcircuit for modeling line-to-output transfer function of buck converter based on GTF 
* 
.subckt buckLTO_GTF in out params: fs=100k duty=0.543 Ron=10m RL=50m Rc=0.1 Rload=3 L=50u C=500u 
 
.param duty2={1-duty} R1={Ron+RL} om0={sqrt((R1+Rload)/L/C/(Rc+Rload))}  
+ B={Rc*Rload/(Rc+Rload)/L+R1/L+1/C/(Rc+Rload)} A={B/2} be={sqrt(om0^2-A^2)}  
+ Kc={Rload/L/C/(Rc+Rload)} KL={1/L} omz={1/C/(Rc+Rload)} ce={(omz-A)/be} si {sin(be*duty/fs)} 
+ si2 {sin(be*duty2/fs)} co {cos(be*duty/fs)} co2 {cos(be*duty2/fs)} ex {exp(-A*duty/fs)} ex2 {exp(-A*duty2/fs)} 
* coordinates of matrix G1 
+ gcc1 {(co-A*si/be)*ex+ex*si*(Rload*Rc+R1*Rc+R1*Rload)/L/be/(Rc+Rload)} gcl1 {ex*si*Rload/be/C/(Rc+Rload)} 
+ glc1 {-gcl1*C/L} gll1 {gcl1/Rload+(co-A*si/be)*ex} 
* coordinates of matrix G2 
+ gcc2 {(co2-A*si2/be)*ex2+ex2*si2*(Rload*Rc+R1*Rc+R1*Rload)/L/be/(Rc+Rload)}  
+ gcl2 {ex2*si2*Rload/be/C/(Rc+Rload)} 
+ glc2 {-gcl2*C/L} 
+ gll2 {gcl2/Rload+(co2-A*si2/be)*ex2} 
**product G=G1*G2 
+ g11 {gcc1*gcc2+gcl1*glc2} g12 {gcc1*gcl2+gcl1*gll2} g21 {glc1*gcc2+gll1*glc2} g22 {glc1*gcl2+gll1*gll2} 
*s-domain transfer function in phase 1, output Vc 
Econtc contc 0 LAPLACE {V(in)} {Kc/((s+A)^2+be^2)} 
*s-domain transfer function in phase 1, output IL 
Econtl contl 0 LAPLACE {V(in)} {Kl*(s+omz)/((s+A)^2+be^2)} 
*first term of vector H1 
Egc gc 0 LAPLACE {V(contc)} {1-exp(-s*duty/fs)*ex/be*((s+A)*si+be*co)};  
*second term of vector H1 
Egl gl 0 LAPLACE {V(contl)} {1-exp(-s*duty/fs)*ex*(s*(co+ce*si)+(A+be*ce)*co-(be-A*ce)*si)/(s+omz)} 
*final programming of Eqs. (8) and (11) 
Eout1 out1 0 LAPLACE {V(gc)}  
+{(1-(g22-Rc*g21)*exp(-s/fs))/(1+Rc/Rz)/(1-(g11+g22)*exp(-s/fs)+(g11*g22-g12*g21)*exp(-2*s/fs))} 
Eout2 out out1 LAPLACE {V(gl)}  
+{(Rc-(Rc*g11-g12)*exp(-s/fs))/(1+Rc/Rz)/(1-(g11+g22)*exp(-s/fs)+(g11*g22-g12*g21)*exp(-2*s/fs))} 
 
.ends; of buckLTO_GTF 
 
 
*subcircuit for modeling line-to-output transfer function of buck converter based on Vorperian averaging model 
* 
.subckt buckLTO_VOR in out params:  duty=0.543 Ron=10m RL=50m Rc=0.1m Rload=3 L=50u C=500u 
 
.param duty2={1-duty} R1={Ron+RL} re={Rc*Rload/(Rc+Rload)} 
Evor out 0 LAPLACE {V(in)} {(duty*Rload+s*duty*C*Rc*Rload)/(duty*duty2*re+Rload+R1+ 
+s*(duty*duty2*re*C*(Rload+Rc)+C*(Rc*Rload+R1*Rc+R1*Rload)+L)+s*s*L*C*(Rload+Rc))} 
 
.ends; of buckLTO_VOR 

Fig. 2: PSPICE subcircuits for modeling line-to-output transfer functions of buck converter. 
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4   Simulation results 
An example of PSPICE simulation of the line-to-output 
frequency response of buck converter is given in [1]. 
The circuit parameters are as follows (see also Fig. 1): 
L=50µH, C=500µF, Rload=3Ω. 
     An input voltage of 28V is converted to an output 
voltage of 15.2V, and the corresponding duty ratio is D 
= 0.543. The switching frequency is 100kHz. The 
converter operates in the CCM. The modeling in [1] 
does not include ESRs of inductor and capacitor. The 
switches were considered as ideal. 
     Results of PSPICE simulations based on the 
subcircuits in Fig. 2 are given in Fig. 3. The second 
subcircuit contains the transfer function of buck 
converter with the averaged Vorpérian model of PWM 
switch [6]. This equation has been obtained from the 
symbolic program SNAP. The corresponding frequency 
response does not reflect the switching processes and 
its validity is limited to the frequency region below one 
half of the switching frequency.  
     The second frequency response is a full 
representative of generalized transfer functions of the 
converter. It models comprehensively the crosstalk of 
wideband input signal to the output, without the fswitch/2 
limitation.  
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Fig. 3: PSPICE simulation of line-to-output frequency 
response of buck converter, ¯ averaged Vorpérian 
model, o GTF-based model. 
 
 

5   Conclusions 
A novel method of AC analysis of switched DC-DC 
converters is described. This method utilizes the so-
called generalized transfer functions. In comparison 
with the classical methods based on averaged 
modeling, the advantages consist in the modeling of 
converter behavior being more credible, particularly in 
the frequency range around fswitch/2, as well as in the 
ability to model correctly the transfers above this 
border frequency. A drawback consists in more 
complicated mathematical models and thus in their 
more difficult implementation in current simulation 
programs. 
     Modeling of the line-to-output transfer functions is 
described in the paper. The above approach can be also 
extended to a similar modeling of control-to-output 
frequency responses. 
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