
A Mobile Agent-based Architecture for Distributed Program Supervision

Systems

NAOUFEL KHAYATI
*1,**

 — WIDED LEJOUAD-CHAARI
*1
 — SABINE MOISAN

**
 — JEAN-PAUL RIGAULT

**

* ENSI Tunis, Campus Universitaire La Manouba
1
SOIE Research Unit, ISG Tunis

TUNISIA

** INRIA Sophia Antipolis – Orion Project

FRANCE

{naoufel.khayati, sabine.moisan, jean-paul.rigault}@sophia.inria.fr ; wided.chaari@ensi.rnu.tn

Abstract: - Program Supervision aims at automating the use of complex programs, independently of any particular

application domain. Program Supervision Knowledge-Based Systems (KBS) offer original techniques to plan and

control program processing activities. The distribution of such systems becomes essential because real applications

imply more and more participants on various sites. It allows either to simply consult existing distant knowledge bases

on the use of programs, or to collaboratively construct new knowledge bases, or to launch a request on a distant KBS

with local data. Our current application concerns assistance to physicians in the use of medical imagery programs and

more precisely osteoporosis detection in bone radiographies. The image processing request management based on

several distant programs is transparent to physicians. In this paper, we propose a distributed architecture based on

mobile agents for program supervision systems and we show why and how to use mobile agents for such systems. A

simple scenario illustrates the functioning of the distributed system when solving a user-request in medical imagery

domain.

Key-Words: - Program Supervision, Distributed Program Supervision, Mobile Agents, Grid Computing, Medical

Imagery, Osteoporosis detection.

1 Introduction
Many libraries of programs have been developed by

specialists in various domains, but the end-users of these

libraries do not necessarily master the programs and thus

cannot use them in the most effective way. So programs

and knowledge on their use must be accessible to non

computer specialists and especially to specialists in the

application domains of the programs. A solution is to

develop systems able to manage the use of these

libraries, freeing users from this know-how and allowing

them to focus on the interpretation of the results. We

thus propose to design program supervision systems

which automate intelligent use of programs. Such

systems meet well the needs for service sharing which is

necessary in several areas like Medical Imagery (e.g.

chemotherapy follow-up based on Factorial Analysis of

Medical Image Sequences [3]), Astronomical Imagery

(e.g. automatic galaxy classification [12]) and Vehicle

Driving Assistance (e.g. obstacle detection [9]). Our

current application is related to assist physicians in the

use of medical imagery programs, more precisely for

osteoporosis detection in bone radiographies.

A program supervision system allows end-users

(physicians in our case) to run programs, to check the

consistency of image analysis methods, to compare

algorithms, to evaluate results, to reconsider some

parameters, and to readjust them.

Physicians can be in different locations, programs and

knowledge on their use can be written by different

persons and thus located on distant machines. That is

why distributing program supervision systems is

interesting. It allows either to simply consult existing

distant knowledge bases, or to collaboratively construct

new knowledge bases, or to launch a request on a distant

KBS with local data. Our goal is to propose solutions for

cooperation and sharing that allow teams to share

medical imagery programs and knowledge on their use,

and thus to benefit from the work of other teams without

revealing the source code. In this paper, we start by

defining program supervision systems and discuss the

interest of their distribution. In section 4, we propose a

distributed architecture based on mobile agents for a

program supervision system, followed by its illustration

for a medical request resolution in section 5.

2 Program Supervision Systems
Supervision environments were born [11] in order to

automate the use of various program libraries. A

Program Supervision System (Fig.1) is a Knowledge-

Based System which ensures the selection and

sequencing of programs in various configurations,

thanks to the reasoning strategy of its engine and to the

knowledge contained in its base. This allows an

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp15-20)

“intelligent” reuse [7, 8] of programs and makes them

accessible to users who are not specialists of the

techniques and algorithms coded in these programs.

Such a system is composed, as any KBS, of a knowledge

base which contains the know-how on the use of the

programs and of a supervision engine which uses this

know-how to build an execution plan of the programs

and to run it in order to obtain the results. The engine

must have all knowledge to plan the programs, to run

them automatically, to launch their execution, to produce

results, to evaluate them, and to know which corrective

actions to undertake (re-planning or re-execution of the

current stage) in the event of bad quality results.

Moreover, a program supervision KBS also involves a

set of programs to be planned and adapted to a precise

application domain, a set of data (images) to be

processed, and a graphic interface making it possible for

users to express their objectives, to follow executions

and to see results.

 KBS

Fig. 1. Components of a Program
Supervision System

3 Distributed Program Supervision
Distributed Program Supervision Systems (DPSS)

should offer services, on the one hand, to distant users

who wish to process their data using program

supervision facilities and, on the other hand, to experts

and designers who wish to share programs and

knowledge. The latter must work in a collaborative way,

i.e. must be able to consult information on existing

programs, to create new common knowledge bases or to

update existing ones by introducing new programs or

new knowledge. Supervision environments were

originally conceived to be mono-site. However, the

components of a supervision environment (see § 2) can

be located on various sites. Not only codes and/or data

can be on different sites, but parts of the engine itself can

be delocalized, for performance reasons, for hardware

characteristics, etc. [7]. A mono-site environment is no

longer sufficient, because it implies to install all the

components, in particular the programs and the complete

knowledge base, on a single site, which is not always

possible or desirable. On the one hand, installing and

maintaining codes remain a heavy problem which

requires time and competence. In addition, programs are

sometimes not very portable and difficult to install

(because they require other utilities or they depend on

development environments or compilers). On the other

hand, when users on various sites create (parts of)

knowledge bases, they in fact develop a competence that

should be easily accessible to a user community using

similar techniques. The repatriation of this knowledge on

all the user sites would induce coherence and

maintenance problems. The setup of architectures and

services for distributed resolution of program

supervision problems can be done by installing

knowledge servers which allows to share and to

disseminate knowledge on multiple client sites. Each site

can allow the use of the resources (programs and

knowledge) of other sites in a transparent way. Each site

thus becomes a client of the competence of others and a

server of its own competence. Consequently, if programs

related to the same problems are developed in

disseminated teams, distributed supervision can allow a

cooperative resolution of problems, in which each stage

represents the know-how of a team. It also allows

researchers to confront their experiments and to enrich

their results. For that purpose, we started studying

various distribution methods for program supervision

systems. Each form of distribution generates different

problems due to the size of the data to be transferred, to

the heterogeneity of the languages and development

environments, to the specific needs of resources for the

execution of some programs, to the management of

knowledge coherence, etc.

4 Distributed Program Supervision

System Architecture
During former work, we developed a supervision server

via the Web, named SPI, which allows the remote

consultation and modification of knowledge bases and

provides an authenticated access to different users. It

manages their requests, repatriates data, delegates

processing, recovers the results and returns them to the

user. SPI is currently under development to improve the

management of concurrent accesses and to maintain the

coherence of the knowledge bases.

The architecture we proposed for a Distributed Program

Supervision System (Fig.2) includes a set of program

servers, a set of knowledge servers, a supervision engine

called Pegase [10] and the supervision server SPI. This

latter plays the role of an interface between the

supervision system and end-users by allowing the

Request and

Input Data /

Parameters

Result

 (Plan and

Data treated)

Supervision

Engine
Knowledge Base

Program

Libraries
Other
Data

User

Interface

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp15-20)

communication with the other components of the

distributed system.

Fig. 2. Distributed Program
Supervision System Architecture

This architecture is also equipped with a metadata

warehouse (used to locate the various resources, to

define access permissions, etc.) and is managed by

mobile agents which are responsible for updating the

previous components and for performing requests.

4.1 Why Mobile Agents?
Any distributed application implies a multi-localization

of the handled entities and requires the mobility of

certain of them. The choice of the entities to be moved

raises problems of technology (how to carry out

mobility?) and requires a size/time compromise (moving

too large entities involves a time penalty). The Multi-

Agent Systems and particularly Mobile Agents can be

adequate solutions to this problem.

Lange and al. [6] defined seven good reasons for using

mobile agents. All these reasons apply in Distributed

Program Supervision:

- Solving a supervision request requires multiple

interactions between the supervision engine and the

different servers. The result is a lot of network

traffic. Mobile agents allow these interactions to take

place locally and no via the network.

- Our system deals with large size data (images), so it

will be better to process these images locally

because it is generally less expensive to move

programs than images.

- Our distributed system must allow the sharing of

heterogeneous resources (programs, data and

knowledge) by facing hardware and software

heterogeneity (interaction mechanisms with the

servers, data format). In this case, mobile agents

which are only dependent on their execution

environment (generally computer-independent and

transport-layer-independent) are a suitable solution.

- If a distant host (involved in the supervision process)

is being shut down while our system is solving a

supervision request, we risk that the treatment will

be stopped and the request will never be solved.

Mobile agents are able to react dynamically to this

unfavorable event (and others) and dispatch

themselves to continue their operation on another

host if possible.

4.2 Mobile Agents Model
To communicate between the different components of

the architecture, when performing a request, our system

needs different classes of agents: a Supervisor agent,

several Solver agents and possibly Evaluator agents.

Only the two last ones are mobile. Each class of agent is

characterized by its behaviour and its knowledge.

4.2.1 Agents Behaviour

The Supervisor agent is associated to the supervision

engine Pegase. It has a triple role:

- Determine the number of necessary Solver agents to

solve the user request and create them. This is

possible if we have independent or parallel

treatments, if not, only one Solver is necessary.

- Plan their itinerary.

- Facilitate the communication and the interaction

between the mobile agents (Solvers and Evaluators),

the engine and the supervision server.

Solver agents are created by the Supervisor and have to

execute distant programs planned by the supervision

engine and communicated by the Supervisor. For the

migration of these agents from a machine to another,

different policies can be considered:

- Leave the programs where they are, make the data

migrate towards program sites and recover results to

transmit them to the end-user.

- Take the programs (sometimes lighter than data) and

execute them on the data hosts.

For example, for the first case, when migrating, a Solver

agent brings necessary data and parameters for the

execution of a planned program, performs this program

and stores in its context the result and the execution

parameters for the next programs.

Evaluator agents are created on the program sites (by

Solver agents) when needed, i.e. when a program

requires evaluation of its results. They are interested in

the evaluation phase of the supervision process. For their

migration, they move from a program server to the

supervision engine, if the evaluation is automatic or from

Meta-

data

Supervision Server
SPI

Supervision

Engine

Pegase

Program Servers

Knowledge Servers

End-user

Mobile

Agents

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp15-20)

a program server to the user site if the evaluation

requires user interaction (manual evaluation). They store

the result to evaluate in their context. If the evaluation is

manual, the user assessment has to be sent to the

Supervisor to allow it to decide of the next step.

4.2.2 Agents Knowledge

The Supervisor agent is characterized by a local memory

containing a dynamic list of its acquaintances (Solvers

and Evaluators with whom it communicates), a request

to be solved (a functionality), a list of the knowledge

files involved in the supervision process and the

generated plan (or part of plan).

In each stage of the supervision process, a Solver agent

is characterized by a local memory containing a dynamic

list of distant programs to carry out and their respective

arguments, a dynamic list of hosts to visit (itinerary) and

a list of its acquaintances, namely its Evaluator agents

with which it communicates, the Supervisor agent and

other Solvers if they exist. Moreover, it has the input

data for the next step and the result of the previous one.

An Evaluator agent is characterized by a local memory

containing a result to evaluate, the kind of the evaluation

(automatic or manual). Moreover, it is capable of

deciding the site to which it must migrate (engine or user

site) and a list of its acquaintances, namely the Solver

agents with which it communicates and the Supervisor.

4.3 Extension of the Architecture
As an enhancement of the presented architecture, we can

propose its integration in a larger one to allow the

participation of a large number of disseminated

concerned persons (physicians, for example).

In order to establish an adequate larger architecture for

distributed supervision systems, we studied some

network techniques such as Peer-to-Peer technology [5]

and Grid Computing technology [4, 5]. Grids offer

relatively sophisticated services and applications; they

usually connect a few sites collaborating for complex

scientific applications. On the other hand, P2P systems

involve much more participants and offer

unsophisticated, limited and specialized services such as

file sharing. In our case, distributed supervision systems

must be powerful, do not have to be limited to simple

operations of file exchange but must rather offer

complex functionalities such as execution of distant

programs and access in various modes to data and

knowledge files; it must also be able to parallelize

processing for time reasons, as for example, when we

want to apply the same algorithm to the various

segments extracted in a radio image, given that an image

can include between 2000 and 4000 segments.

Consequently and contrary to [1] which proposes a Peer-

to-Peer architecture for the distributed knowledge

management, we prefer a Grid one since it offers richer

strategies making it possible to accelerate processing and

to increase collaboration.

As chosen by Cao and al. [2], we suggest also an

architecture combining Grid and Agents. But, we will

not use agents for the resource management only

(knowledge bases, programs, etc.), but also for

performing some complex tasks like the execution of

distant programs.

5 Scenario for a Medical Request

Resolution
Let us first define two major concepts the Pegase engine

is based on: operators and criteria.

- Operators are of two types: primitive and composite.

A primitive operator represents a particular program

and a composite operator represents a combination

of programs. Combinations of programs correspond

to decompositions into more concrete operators at

various levels of abstraction, either by specialization

(alternatives), or by composition (sequences,

parallels, etc.).

- Criteria represent decisional information, they are

implemented by sets of inference rules which play

an important role during the reasoning, i.e. choosing

between various alternatives (choice criteria),

adapting the programs execution (initialization

criteria), diagnosing the results quality (evaluation

criteria), and repairing a bad execution (repair

criteria and adjustment criteria). These rules are

written by experts on the use of the programs.

The following scenario describes the way a request is

solved by a DPSS. Let us consider for example a request

OSTEO for osteoporosis detection in bone radiographies

by a mathematical morphology approach.

Once connected to the SPI supervision server (after

authentication), a physician can launch a request by first

selecting the knowledge base to be questioned from a list

and specifying the input data that he/she wants to be

processed. Receiving the request, the server transforms it

into a program supervision purpose i.e. in a functionality

manageable by Pegase. Referring to the metadata

contents, the server deduces that OSTEO can be solved

thanks to the "Morphology" functionality carried out by

the composite operator "OsteoMorpho". Finally, the

server creates a Supervisor agent and gives him all

necessary information (functionality to achieve and input

data).

Since the Supervisor agent is an interface between

Pegase and the future agents, it has to forward the

previous information to the engine. Now and thanks to

the metadata, Pegase becomes able to locate all the

necessary knowledge to use for OSTEO resolution.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp15-20)

Then, the supervision engine can start the planning phase

of the execution of the various distant programs, i.e.

build a plan or a part of plan for executing these

programs.

To this end, Pegase begins by decomposing operator

"OsteoMorpho" in other more concrete operators

(composite or primitive). Fig.3 presents a graph of the

osteoporosis detection base, showing the decomposition

of operators. "OsteoMorpho" breaks up into a sequence

of operators: lecture, squelettisation and analyse. To be

able to decide the number of Solver agents and the

triggering of the planned operators, we take into account,

during the planning phase, the dependencies between

programs i.e. whether the results of a program are inputs

to some further programs.

Fig. 3. Osteoporosis Detection Base

The first operator “lecture” is primitive, so it has to be

executed. Thus, a Solver agent will be created by the

Supervisor and informed of the following parameters:

the program name, its location and the evaluation. The

evaluation parameter can be No if there is no evaluation

for this program, Man if the evaluation is manual and

Auto if it is automatic. Note that “lecture” needs no

evaluation. The agent migrates to the distant host of

program “lecture” having in its context, in addition to

the preceding parameters, the input data to be treated.

While the Solver is running, Pegase continues by

breaking up "squelettisation" into two alternative

operators: squeletteBin or squeletteGris. The choice

between these two operators can be carried out by the

user or by Pegase itself, according to existing choice

rules.

- If the choice is automatic, Pegase uses choice

criteria to decide the operator to plan.

- If the choice must be carried out by the user, the

engine sends to the server (via the Supervisor agent)

a request for choice which can be in the form of a

question "Do you want to carry out a binary

skeletonization or a skeletonization in grey levels?".

The answer of the user will be read by Supervisor

and transmitted to the engine so that it takes into

account this choice in its planning.

Let us suppose that according to the last choice, the

squeletteBin program is planned.

At this level, the skeletonization requires an evaluation;

therefore, the Supervisor agent sends the name of the

program to be carried out (squeletteBin), its location, and

the evaluation parameter to the distant Solver.

Receiving these parameters, the Solver agent migrates

(Fig.4) towards the squeletteBin site bringing with him

the result of "lecture" execution. Once the execution of

the program is finished, it is time to pass to the

evaluation phase of the results, which is the role of

Evaluator agents. Such an agent will be created by the

Solver and informed of the result and the type of the

evaluation so that it may decide where to migrate next

(Fig.4):

- If the evaluation is automatic, it migrates towards the

site of the supervision engine;

- If the evaluation is manual, it migrates to the user

site to ask for an answer. The Evaluator finishes by

sending this opinion (assessment) to the engine.

If the assessment is positive, the engine continues its

planning with the composite operator "Analyse" and

transmits its plan to the Solver via the Supervisor.

If the assessment is negative, the engine will use repair

or parameter adjustment criteria to decide to start

planning again or to re-execute the same plan with

different parameters.

If it has repair criteria, the engine will repair the previous

plan, for example, by adding an optional operator not

previously considered or by choosing another operator if

there were a choice. In this case, re-planning takes place

and the Solver will be informed of the new plan and will

behave in the same way as with the previous plan.

If it has adjustment criteria, and according to them, the

engine readjusts some parameter values of the current

program. This readjustment can be automatic (made by

the engine) or manual. In case of manual readjustment,

the engine transmits a request for parameter adjustment

to the supervision server, such as for example: "To repair

the plan, do you want to change the parameter P from 10

to 9 or to 8?". The server forwards this request to the

user, gets the answer and then gives the adjusted

parameter value to the Solver via the Supervisor. The

Solver runs its program again with the updated value(s)

of parameter(s).

This process is repeated until the last program (attributs

or attributs_direction) is executed. The Solver agent

carries out the chosen operator (we suppose “attributs”)

while being informed that it is the last program so that it

can go back to the Supervisor site bringing with it the

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp15-20)

final result (the response to the request). Finally, the

Supervisor transmits this result and the generated plan

(lecture – squeletteBin – dimensions_projetes – direction

– attributs) to the end-user.

Fig. 4. Example of Agent Dispatching for Osteoporosis

Detection

Thus, and thanks to the DPSS, we could assist physician

in his osteoporosis detection diagnosis by sequencing

and executing a set of programs which use a

mathematical morphology approach and about the

contents of which the physician has no idea.

6 Conclusion
Supervision environments were originally conceived to

be mono-site. However, their interest and the nature of

their components made their distribution necessary in

order to offer services to different distant users:

specialists in image processing who can try out and

compare their programs, knowledge base designers who

can describe the use of these programs and physicians

who can use these programs through the WEB and thus

improve their means of diagnosis.

Moreover, the interest of this work was felt by various

teams in different domains and especially in medical

imagery.

In this article, we proposed a distributed architecture for

a program supervision system based on mobile agents.

We showed how such a system behaves to solve a

request of osteoporosis detection.

To extend our architecture, we intend to integrate it in a

Grid architecture and thus to combine a network

technology for distribution (Grid computing) and an

artificial intelligence technology for distributed

processing (mobile agents). Forthcoming work will

concern the integration of new programs from different

teams in our distributed system and the use of ontologies

to simplify the search for resources in the distributed

supervision system.

References:

[1] Bonifacio M. and al., A peer-to-peer architecture for

distributed knowledge management, In Proc. of the

3rd Intl. Symposium MALCEB’2002, Erfurt /

Thuringia, Germany, 2002.

[2] Cao J. and al., ARMS: An Agent-based Resource

Management System for Grid Computing. Scientific

Programming, 10(2), 2002, pp. 135-148.

[3] Crubézy M., Aubry F., Moisan S., Chameroy V.,

Thonnat M. and Di Paola, R., Managing complex

processing of medical image sequences by program

supervision techniques, In Proc. of SPIE Medical

Imaging 1997, Newport Beach, CA, Vol. 3035-85, ,

1997, pp. 614-625.

[4] Foster I. and al., The Anatomy of the Grid: Enabling

Scalable Virtual Organizations, Intl. Journal of

Supercomputer Applications and High Performance

Computing, 15(3), 2001.

[5] Foster I. and Iamnitchi A., On Death, Taxes, and the

Convergence of Peer-to-Peer and Grid Computing,

2
nd
 Intl. Workshop on Peer-to-Peer Systems

(IPTPS'03), Berkeley, CA, 2003.

[6] Lange D.B. and Oshima M., Seven good reasons for

mobile agents, Communications of the ACM, Vol.42,

No.3, 1999, pp. 88-89.

[7] Lejouad W., Etude et application des techniques de

distribution pour un générateur de systèmes à base de

connaissances. PhD Thesis, Nice University, 1994.

[8] Moisan S. and Lejouad-Chaari W., Réutilisation

intelligente de programmes de vision en

environnement distribué, TAIMA’01, Hammamet,

Tunisia, 2001.

[9] Shekhar C., Moisan S. and Thonnat M., Real-Time

Perception Program supervision for Vehicle Driving

Assistance, In Okyay Kaynak, Mehmed Ozkan,

Nurdan Bekiroglu, and Ilker Tunay, editors,

ICRAM’95 Intl. Conference on Recent Advances in

Mechatronics, pp. 173–179, Istanbul, Turkey, 1995.

[10] Thonnat M. and Moisan S., What can Program

Supervision Do for Software Reuse?, IEE

Proceedings-Software. Special Issue on Knowledge

Modelling for Software Components Reuse, 147(5),

2000, pp. 179-185.

[11] Thonnat M. and Moisan S., Knowledge-Based

Systems for Program Supervision”, In Proc. of

KBUP’95, INRIA Sophia Antipolis, France, 1995,

pp. 3-8.

[12] Vincent R., Thonnat M. and Ossola J.C., Program

supervision for automatic galaxy classification, In

Proc. of the Intl. Conference on Imaging Science,

Systems, and Technology, CISST'97, June 1997.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp15-20)

