
Implementation of Ubiquitous Digital Systems and Services*

Kyo-Sun Song, Gyeo-Re Park, Yu-Raak Choi, SeSangPyoungHwa Lee, Min-Young Kim, Yun-Sam
Kim, Eun-Sun Cho

School of Electrical & Computer Engineering
Chungbuk University

12 Gaeshin-dong, Heungduk-gu, Chungbuk
Korea

Abstract: - In this paper, we propose a simple middleware for ubiquitous computing systems. Developed with
UPnP in Java, it efficiently organizes runtime interactions of devices. To show the feasibility of this system, we
implemented a set of customized services based on this middleware. This prototype allows users to enjoy services
at various spatial points even while moving around.

Key-Words: - Ubiquitous, Java, UPnP, RMI

* This research is supported by the ETRI, Korea.

1 Introduction

‘Ubiquitous computing’ is computing environment
that everything is connected for user service and get
intellectual. Moreover computer should be provided to
be invisible in physical space and service depending
on user's condition. Although there have been many
related research, few case which build and experiment
this environment have been held in Korea.

In this paper, a simple middleware for ubiquitous
computing system will be proposed and an example
using this will be introduced. Proposed ubiquitous
middleware was composed through Java and UPnP to
service with connecting devices which located apart in
different place for given user. And using this, ‘1 Inch’
system which provide that when user move to another
place, he or she can be served continuously services
such as a favorite movie or music which was provided
in previous space. Software robot and display devices
which are available for user's convenience were
installed in each space and the moving of user was
sensed by cameras and RFID.

2 Middleware

2.1 Implementation Model

 The basic implementation model of middleware is
that when event occur by all devices is forwarded to
the EventManager by the Event Deliver, proper action
to that event will take place through Ctrl. Fig. 1
explains this structure.

Fig. 1 Implementation Model

2.2 UPnP Implementation

UPnP is the abbreviation of Universal Plug and Play.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp21-24)

It can control or view the status of devices in local
network. And it is the concept extended to network of
plug and play that if connected, it will be recognized.
It uses CP (Control Point) to control devices.
UPnP protocol is based on many standards. (GENA,

SSDP, SOAP, HTTPU, HTTP) Hence we need to
understand and implement these protocols to make
UPnP devices. CyberLink provides Java Package for
UPnP development [1]. If we use UPnP to implement
above model, there would be a few weak points.
 First, although EventManager and devices should
communicate bidirectional, in UPnP, it is impossible.
The reason is that control from CP to devices is
available, but control from devices to CP is
unavailable. Because a device provide action and an
attribute description to CP and CP controls a device
according to provide an attribute description. For this
reason, we need another way to pass the event which
occurred in a device to EventManager and there are
two solutions.

2.2.1 Checking method

 Devices have an event attribute which remember the
events occurred and CP checks each devices' event
attribute periodically, if there is event to run, it will do
appropriate action and then initialize Event Attribute.
 But UPnP has much delay relatively caused by
network communication. Therefore if new event
happens before CP check event Attribute, previous
event will be able to disappear.

2.2.2 Using CP

We provide CP controlled by device for sending
event to EventManger. The CP called Deliver has a
'sendEvent' method. When devices generate an event,
it sends the event to EventManger through Deliver's
sendEvent method. This way doesn’t occur above
problem. But the works of CP- find a device, manage a
device list- are overlapping and a device needs
occasionally more than one CP. If the device has more
than one CP, its CPs doesn’t correctly work at all time
because their basic data duplicates.

2.3 RMI Implementation

The Java Remote Method Invocation (RMI) system
allows an object running in one Java Virtual Machine
(VM) to invoke methods on an object running in
another Java VM. RMI provides for remote

communication between programs written in the Java
programming language [2]. before starting RMI server,
we need to start RMI's registry, using the rmiregistry
command. If you change RMI’s object, you’ve to
recompile and distribute the file to clients.
We can improve a performance and a function more

than UPnP. But pre-setting annoy us before starting
RMI .
We developed both ways in the beginning. UPnP’s

performence is not enough to hope in test. But it has
some merits. Despite it allows standardization and
connection control, we choose the RMI platform for
good performance at last.

3 Service Implementation

Fig. 2 ‘1inch’ service room

‘1 Inch’ service consists of Fig. 2 with purposed
middleware. When nobody stays in the room, ① web
cam captures visitors and saves the picture. ② and ③
web cam checks where person is. The monitor
installed in each room is displayed 1Inch service
screen. When the person sees a movie or listens to the
music by 1Inch service in the A's room, if he moves to
B's room, he can be served continuously services.

In this section we explain how to recognize a
movement and 1 Inch service.

Fig. 3 move B’s Room to A’s Room

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp21-24)

3.1 Motion Detector

② and ③ web cam can capture enough pictures to

check a room state. It is importent that dectecting a
difference between previous picture and present
picture in real-time. The picture consists of a variaty of
pixels. We convert them into a binary data to process
efficiently.

3.1.1 Binary Conversion Algorithm

A pixel of an image has four information. It is an

index, red value, green value and blue value. The
index is a location of pixel and red, green and blue is
the three primary colors. Those pixels make one of a
picture in the know. Each pixel has a unique value so
that we can reorganize the image. Binary Conversion
reads the values in order and makes a histogram of
them. And then we calculate an average of them. So
we get a binary data accoding to the average.

3.1.2 Image comparison

A web cam creates 320x240 resolution images.
There are 76800 pixels and each pixel has only 0 and 1
value through binary conversion. The binary value
depends on whether the original value is greater or
less then the average. We compare each pixel and
express the result numerically. The numerical value of
result is normally 100~9,000. When there is a
movement, it increases more than 15,000 so that we
can recognize there are something moving.

Fig. 4 ‘1 Inch’ service screen
(GuestBook, Movie)

3.2 ‘1 Inch’ Service

‘1 Inch’ service is displayed full-screen and serviced

basically four services - movie, music, weather
information and guestbook - with character. The

resource for service - movie clips, music clips and
pictures - is shared in the network.
There are two ways to play movie and music in Java.

First, it is low-level programming to use java.io. It is
powerful but not convenience. Nowadays, Java
supports a multimedia programming by Java
Multimedia Framework (JMF) [3]. It is convenience
to use and enough function to control. Movie and
music service are played by JMF. The screen display
slideshow in music service.
Weather information service is a weather forecast.

We get the data provided by kweather site. It is a
simple text file.
Guestbook service can check who invited here while

user goes out of the room.

4 Related Work

4.1 Middleware

Project Aura is a ubiquitous architecture in Carnegie
Institution [4]. The Aura span is every system level:
from the hardware, through the operating system, to
applications and end users. The example application
of Aura Architecture is Portable Help Desk (PHD).
PHD is a context-aware application built on two
fundamental services: spatial awareness and temporal
awareness. Spatial awareness includes a user’s relative
and absolute position and orientation. Temporal
awareness includes the scheduled time of public and
private events. Aura is specifically intended for
pervasive computing environments involving wireless
communication, wearable or handheld computers, and
smart spaces. So Aura concentrates upon a problem
such as intermittent and variable-bandwidth
connectivity, concern for battery life, and the client
resource constraints that weight and size
considerations impose.
Unlike Aura, PICO's main components are software

entities, called delegents (intelligent delegates), and
hardware entities, called camileuns (connected,
adaptive, mobile, intelligent, learned, efficient,
ubiquitous nodes) [5]. Its novel features include
creating mission-oriented dynamic communities of
software agents, just-in-time communication and
proactive collaboration among these communities, and
adapting hardware and software changes as well as
application requirements.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp21-24)

We research how to manage efficiently a variety of
context information like Aura architecture, unlike
software smart agent, PICO.

4.2 Service

 MIT’s smart room acts like invisible butlers [6]. And
they use cameras, microphones, and other sensors to try to
interpret what people are doing in order to help them.

The example of GAIA system is an active space [7].
It is a physical space coordinated by a responsive
context-based software infrastructure that enhances
mobile users’ ability to interact with and configure
their physical and digital environments seamlessly.
Smart Room, Active Space and 1 Inch Service Room

is a similar service to interact with user in physical
space. But both systems consider an interaction in one
service space. 1 Inch service considers an interaction
between service spaces.

5 Conclusion

In this paper, a simple middleware for ubiquitous
computing system proposed and an example using this
introduced. Proposed ubiquitous middleware was
composed through Java and UPnP to service with
connecting devices which located apart in different
place for given user. And using this, 1Inch service
system which provide that when user move to another
place, he or she can be served continuously services
such as a favorite movie or music which was provided
in previous space. We will improve the middleware to
control a variety of events and process. So the service
will be changed as VOD, MOD streaming service (Not
sharing the resource in the network.).

References:
[1] CyberLink for Java,

http://www.cybergarage.org/net/upnp/java/
[2] Java Remote Method Invocation (Java RMI),

 http://java.sun.com/products/jdk/rmi/index.jsp
[3] Java Media Framework API,

http://java.sun.com/products/java-media/jmf/inde
x.jsp

[4] David Garlan, Daniel P. Siewiorek,Asim
Smailagic, and Peter Steenkiste Aura: Toward
Distraction-Free Pervasive Computing

[5] Kumar, M. Shirazi, B.A. Das, S.K. Sung, B.Y.
Levine, D. Singhal, M PICO: A Middleware
Framework for Pervasive Copumting

[6] Alex P. Pentland, Head of Perceptual Computing
Section at the Media Lab of MIT Smart Room
1996

[7] M. Roman, C.Hess, R. Cerqueira, A. Ranganathan,
RH Campbell, K. Nahrstedt. Gaia: A Middleware
Infrastructure for Active Spaces. IEEE Pervasive
Computing Vol. 1, No. 4, p. 74-83. October -
December, 2002

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp21-24)

