
On Formal Verification Methods for Password-based Protocols:
CSP/FDR and AVISPA

ABDELILAH TABET, SEONGHAN SHIN, KAZUKUNI KOBARA, and HIDEKI IMAI

Institute of Industrial Science
University of Tokyo

4-6-1 Komaba Meguro-ku Tokyo 153-8505
 JAPAN

http://imailab.iis.u-tokyo.ac.jp

Abstract: Formal verification methods have proved a high talent in finding potential attacks automatically in
several security protocols. So far, many formal methods have been proposed in the literature. In this paper we
checked the abilities of two well-known checking tools, CSP/FDR and AVISPA, in detecting off-line attacks that
may exist in password-based authentication protocols. For this, we apply these two formal methods to several
variants of password-based protocols, vulnerable to off-line attack, so that we analyze the results and then show
the weaknesses of each method.

Key-Words: Passwords, Off-line Attacks, Authentication Protocols, Formal Methods, Casper, CSP, FDR,
AVISPA

1 Introduction
With the rapid spread of use of Internet and the sharp
growth of network-based services, the communication
security has become more relevant than any other time
before. Sometimes, malicious attackers with little of
efforts get authenticated to servers and get access to
important documents or services illegally. For these
reasons security protocols received a lot of attention
and loomed on the horizon as a potential solution.
Literature has a huge number of security protocols
aiming to establish a secure communication channel
where secrecy and authentication are assured.
However, literature also showed that many of them
failed to reach what they were designed for.

The most likely to happen is off-line attacks that
seem difficult to predict in many security protocols by
just hand-analysis. In order to check security holes
automatically, formal verification methods have been
proposed so far. Even though specifying a protocol
and its verification via formal methods are a hard task,
it is very important to do before any implementation.

Formal methods with different approaches were
introduced to fulfill an exact specification and analysis
of the security protocols. Literature has showed that
model checking has been proven to be a very
successful approach for analyzing security protocols.

Their basic approach is to compare a model of the
protocol along with a model of the intruder. Therefore
the checking tool can explore all the state space of the
abstraction model and extract counterexamples states
in which security protocol failed to fulfill its security
goals. Moreover it also gives a possible scenario of the
attack which an intruder can mount. However, model
checking is limited to a finite system containing a
small state space; otherwise it will be confronted with
the state explosion problem.

Murphi (by Mitchell et al. [1]), Brutus (by Marrero
et al.[2]), ESTELLE [7], NRL Protocol Analyzer
[8,9,10], FDR [5], and AVISPA by AVISPA-project
group [12] are examples of model checking tools. In
particular, model checking using CSP/FDR has been
widely used in formal methods [4,11] and frequently
cited in the security literature, after finding
man-in-the-middle attack of Needham-Schroeder
public key protocol [4,5]. AVISPA also received
much interest by declaring that it can find almost all
the known and some unknown attacks in several
security protocols [13].

This paper is constructed as follows: Section 2
introduces a password-based security protocol for
authentication and off-line attacks. Section 3 gives a
brief introduction to formal methods to be used in
analysis, and the results of these methods on several

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp310-315)

password-based authentication protocols. In Section 4,
we discuss about why the formal methods get the
results with the conclusion that they are not enough for
detecting off-line attacks in security protocols. In
addition, we show a verification result of AVISPA on
an example that is a modified protocol from one (cited
in the library of protocols checked by AVISPA).
Finally, we summarize this work.

2 Password-based Protocols
Owing to the usability and convenience of passwords,
password-based authentication protocols have been
extensively investigated for a long time where two
parties (e.g., Alice and Bob) share a short password in
advance. However, designing a secure authentication
protocol is not trivial since there are existing two
major attacks on passwords: on-line and off-line
attacks. The on-line attack is a series of exhaustive
search for a secret performed on-line, so that an
attacker can sieve out possible secret candidates one
by one communicating with the target party. In
contrast, the off-line attack is performed off-line
massively in parallel where an attacker exhaustively
enumerates all possible secret candidates, in an
attempt to determine the correct one, by simply
guessing a secret and verifying the guessed secret with
recorded transcripts of a protocol. While on-line
attacks are applicable to all of the password-based
protocols equally, they can be prevented by letting a
server take appropriate intervals between invalid trials.
But, we cannot avoid off-line attacks by such policies,
mainly because the attacks can be performed off-line
and independently of the parties.

2.1 Off-line Attacks
As one trivial example of off-line attacks, consider a
simple unilateral authentication protocol (like CHAP
[16]) in which one party sends a random challenge c
and the other party replies with r=H(pw,c), where pw
represents the shared password and H is a
cryptographic hash function. While this protocol can
be proven secure (for an appropriate choice of H)
when pw has high entropy, it is completely insecure
when the entropy of pw is small. Indeed, in the latter
case a passive attacker who obtains a single transcript
(c,r) can run an off-line attack, trying all values of pw'
until one satisfying r=H(pw',c) is found.
Consequently, ensuring immunity to off-line attacks in
password-based protocols has been a very critical
issue in research fields.

However, many of these protocols failed to fulfill
its security purpose in the case where users chose short
passwords. Such situation can be very dangerous since
it would be easy for an attacker to mount a dictionary
attack on the password and therefore break the secrecy
of the authentication which the protocol was designed
to establish. In this paper, we focus on off-line attacks
in password-based authentication protocols.

3 Casper/FDR and AVISPA
This section introduces two well-known formal
methods for verifying security properties (i.e., secrecy
of password and authentication) of password-based
protocols. The two methods to be used in this paper are
CSP/FDR [3,5] and AVISPA verification tool [12].

3.1 CSP/FDR
The FDR (Failure Divergence Refinement) is one of
the widely-used verification methods especially after
it exposed the man-in-the-middle attack of
Needham-Schroeder public key protocol [4]. The
checker FDR is a model-checking tool for concurrent
and reactive systems modeled in CSP
(Communication Sequential Processes) [3]. Since
generating CSP code is a time consuming and
error-prone task, Casper was produced by Gavin
Lower in 1997 [14] to overcome CSP code writing
difficulties. Casper compiles an easy input script to a
CSP code. Therefore it simplifies the task for
non-experts and non familiars with CSP code to
produce a CSP code without having much knowledge
about its notations. In security protocols, FDR is
restricted to a small type of systems where, for
example, nonces and keys types are finite. The input of
Casper must contain the protocol definitions, the type
of system to be checked, the initial knowledge of the
agents and the specification of protocol's goals; it
defines the data types to be used and the intruder's
abilities.

3.2 AVISPA
AVISPA stands for Automated Validation of Internet
Security Protocols and Applications; it has been
realized by the AVISPA project group. The AVISPA
verification tool is publicly available since June 2005:
it consists of independently developed, but
interconnected, modules. A protocol designer
specifies the protocol along with the security
properties which the protocol is supposed to achieve
by the High-Level Protocol Specification Language

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp310-315)

HLPSL [15]. The HLPSL is a role-based formal
language that allows specifying data structures,
alternative intruder models, complex security
properties, different cryptographic primitives and their
algebraic properties.

Once a protocol is specified by the HLPSL, it is
translated into equivalent IF specifications by the
HLPSL2IF translator. This IF specification is input to
the back-ends of the AVISPA tool, which implements
different analysis techniques. The current version of
the tool, to be used in this paper, integrates four
back-ends: On-the-fly Model-Checker (OFMC),
Constraint-Logic-based Attack Searcher (CL-AtSe),
SAT-based Model Checker (SATMC), Tree Automata
based on Automatic Approximations for the Analysis
of Security Protocols (TA4SP).

4 Analyzing Security Protocols using
CSP/FDR and AVISPA
In this section, we treat eight password-based
authentication (and key exchange) protocols: a
generalization of password-based authentication and
key exchange protocol (Protocol I), IPsec PSK
aggressive and main modes (Protocol II and III), two
examples of Diffie-Hellman based encrypted key
exchange (Protocol IV and V), three examples of
RSA-based encrypted key exchange (Protocol VI, VII
and VIII). In fact, most of the protocols we prepare
here are vulnerable to off-line attacks. That’s the
reason why we want to see whether CSP/FDR and
AVISPA can really find out security holes in the
protocols.
 For simplicity, we denote two parties as Alice and
Bob with each ID, A and B, respectively. In addition,
“h” means a cryptographic hash function and “||”
means concatenation.

4.1 Generalization of Password-based
Authentication and Key Exchange (Protocol I)
In Protocol I, Alice and Bob share a short password pw
and want to establish a common session key through a
challenge-response protocol. Alice first sends her ID A
along with a nonce r1. Based on these values, Bob
calculates v2=h(pw||SID||"v2") where
SID=h(r1||r2||A||B), r2 is a nonce chosen by Bob and
“v2” is a pre-shared word between Alice and Bob, then
sends v2 along with its ID B and r2. Responding to this,
Alice replies with v1=h(pw||SID||"v1") where
SID=h(r1||r2||A||B). In the last step of Protocol I,
Alice and Bob check the validity of v1 and v2,

respectively, and then the shared secret key is
computed as sk=h(pw||SID||"sk") where “sk” is a
pre-shared word that Alice and Bob will use for the
construction of the common key.

For analysis of this protocol, we first use
CSP/FDR by modeling its specification and security
properties with Casper. Since the password is shared
between Alice and Bob, we checked the secrecy of the
password and the authentication of the protocol. As a
result, we find that the intruder is able to mount a
man-in-the-middle attack between the legal users in
order to obtain v2 which serves as a verifier for his
guess. The only unknown value to the attacker is pw,
therefore mounting an off-line dictionary attack on the
password and computing the value v2 the attacker
easily verifies its guess. This attack is listed below:

1. Alice → I_Bob: R1, Alice
1. I_Alice → Bob: R1, Alice
2. Bob → I_Alice: Bob, R2, h(pw,R1,R2,A,B)
2. I_Bob → Alice: Bob, R2, h(pw,R1,R2,A,B)

Then we analyze the same protocol by the AVISPA

tool in order to verify the previous result we got from
CSP/FDR. We described the protocol by using
HLPSL and checked the secrecy and the
authentication of the protocol. However, the AVISPA
tool said that the protocol is "Safe": which means that
the password is always not guessable for an attacker
even when it is poorly-chosen one.

4.2 IPsec PSK Aggressive and Main Modes
(Protocol II and III)
In Protocol II (IPsec PSK aggressive mode), Alice and
Bob share a short password pw and want to construct a
secret key sk=h(SEC||SID||"sk") where
SEC=h(pw||r1r2G) and SID=h(r1G||r2G||A||B). First
Alice sends her ID A and a Diffie-Hellman public
value r1G. Then Bob replies with B,r2G,v2 where B is
his ID, r2G is a Diffie-Hellman public value and
v2=h(SEC||SID||"v2"). Bob computes the Diffie-
Hellman key r1r2G by using r1G received from Alice.
Similarly Alice computes v1=h(SEC||SID||"v1") and
sends it to Bob. Now both Alice and Bob are able to
compute the secret key sk if v1 and v2 are correct.

In the analysis of this protocol, we described the
protocol using Casper notations. However, Casper
doesn't allow describing the algebraic properties of the
Diffie-Hellman protocol. Note that Casper instead
allows its characterization by a public and a secret key
when it is the case of asymmetric and, a symmetric key

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp310-315)

when it is the case of symmetric encryption. For
Protocol II, we define a new datatype F = G |
Exp(F,Nonce), unwinding 2 as well as defining
commutativity and associativity properties of the
exponent, in order to give the legal users and the
attacker the possibility to calculate the Diffie-Hellman
key based on the Diffie-Hellman public value of the
other. We checked the secrecy and the authentication
of the protocol using FDR. As a result, FDR was not
able to converge and therefore not able to say whether
Protocol II is safe or not.
By AVISPA, we described the protocol using the
algebraic properties of exponent provided by HLPSL
language. As a result, the backbone CL-AtSe
responsible for checking protocols failed to detect any
attack.
 Similarly we checked IPsec PSK main mode
(Protocol III) which looks mostly like the aggressive
mode except that Alice and Bob use the
Diffie-Hellman key as a session key to encrypt their
IDs and v1 and v2. In fact, Alice first sends r1G. Bob
generates a session key sk=h(r1r2G), use it to encrypt
his ID {B}_sk and send it along with his
Diffie-Hellman public value r2G. Alice replies by
{A,v1}_sk, which is calculated the same way as in the
previous protocol and Bob also sends v2 encrypted by
sk. As the previous protocol, we modeled the protocol
by using the Exp datatype mentioned above, gave to
the intruder the possibility to masquerade as Alice,
share the session key with Bob and then mount a
dictionary attack on the password. However, FDR
cannot decide if it is secure or not. AVISPA’s answer
on this protocol is “Safe”.

4.3 Diffie-Hellman based Encrypted Key
Exchange Protocols (Protocol IV and V)
We prepare two examples of EKE protocols where
one is secure and the other is insecure. Both are based
on the Diffie-Hellman protocol over some algebraic
operations like multiplication. In the secure protocol
(Protocol IV), Alice and Bob share a password pw and
two different generators G,Q of a finite group. Alice
first sends her ID A along with y1=r1G+pwQ where
r1 is a nonce. Bob replies by his ID B along with
y2=r2G+pwQ and v2=h(pw||r1r2G||y1||y2||A||B||
“v2”). On receiving these messages from Bob, Alice
sends her v1=h(pw||r1r2G||y1||y2||A||B||“v1”). After
a check of the values v1 and v2, Alice and Bob
compute the secret key sk=h(pw||r1r2G|| y1|| y2||
A||B||“sk”).

For the analysis of this protocol, we regard the
multiplication as encryption since Casper doesn’t
allow many algebraic operations. Therefore, we model
y1 as {r1G}_pwQ. Besides that, we define Exp
datatype, and its associativity and commutativity
properties as in the previous section. As a result, we
get a “!” meaning that the program is able to converge
to an exact result. However, AVISPA found no attack
on the protocol.

By the same way, we analyzed Protocol V which
looks exactly like the former except that this protocol
utilizes only one generator G of the group. By
replacing Q in the former with G, we get the new
protocol that is not secure again off-line attacks.
However, the results we got for the former are the
same for this one.

4.4 RSA-based Encrypted Key Exchange
Protocols (Protocol VI, VII and VIII)
We verify the security of three examples of
RSA-based EKE protocols. In the first example
(Protocol VI), Alice and Bob share a password pw.
First Alice generates a nonce r1 and sends it with her
ID A to Bob who generates a RSA public key (e,n),
and a nonce r2, and sends them along with his ID B.
Alice generates a random value t in order to construct
a secret key SEC=h(pw||t) and sends t to Bob under
the from {t*h(pw)}_(e,n). Since only Bob has the RSA
private key (d, n), he is the only one who is able to
decrypt this message and sends v2=h(SEC||SID||
“v2”) where SID=h(r1||r2||A||B). Alice replies by
v1=h(SEC|| SID||“v1”) after verifying v2. If Bob
verifies v1, they can compute the secret key
sk=h(SEC||SID||“sk”).

We modeled the protocol using Casper and
effectuating some modifications, such as minimizing
the number of variables at the input of the hash
functions without affecting the security properties of
the protocol, in order to avoid the state space
explosion. FDR detects an attack described as follows:

 1. Alice → I_Alice: Alice, R1
 1. I_Alice → Bob: Alice, R1
 2. Bob → I_Alice: Bob, R2, PK
 2. I_Alice → Alice: Bob,R2, PKm
 3. Alice → I_Alice: {{T}{Pw}}{PKm}
 3. I_Alice → Bob: {{T}{Pw}}{PK}
 4. Bob → I_Alice: h(Pw,T,R1,R2)

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp310-315)

Here I_X means that the Intruder is masquerading
as the legal user X in this protocol and PKm is the
intruder’s public key. The intruder will mount a
man-middle attack to be able to guess the value of the
password in the end. Therefore, Alice believes Pw is a
secret shared with Alice, however, the intruder knows
Pw. But, AVISPA says that this protocol is “Safe”.

The second example (Protocol VII) is similar to
the former one. First Alice sends r1 and A, a nonce and
her ID respectively to Bob who will respond by r2, B,
and (e,n). Using Bob’s RSA public key, Alice selects a
random value t and sends it, which is encrypted by
RSA and later masked with the password
({{t}_(e,n)}_pw), along with v1. If v1 is correct, Bob
sends v2. If v2 is correct, Alice and Bob can compute
the secret key sk as in the first example.

In the analysis, we found an attack by FDR as
follows:

1. Alice → I_Bob: Alice, R1
2. I_Bob → Alice: Bob, R1, PKm
3. Alice → I_Bob: {{T}{PKm}}{Pw},h(Pw,T,R1,R2)

In this attack, the intruder guesses the value Pw
and verifies his guess by verifier h(Pw,T,R1,R2).
Hence, Alice believes Pw is a secret shared with Bob,
however it is known to the intruder. With AVISPA,
we couldn’t find any attack.

The third example (Protocol VIII) is the same as
Protocol VII except that Alice sends v1 (sent to Bob
in the third message flow in Protocol VII) in the fifth
message flow of the protocol. Surprisingly, both
FDR and AVISPA said that there is no attack.
However, Protocol VIII is vulnerable to a special
kind of off-line attacks (so-called e-residue attacks)
[17].

4 Discussions
We summarized the results from Section 3 in Table1.
As Table1 indicates, FDR was able to detect in many
cases, especially those not using the Diffie-Hellman
protocol, offline attacks. The reason is that Casper has
an imbedded model for guessing off-line attacks so
that one can activate this model by declaring that the
password is “Guessable”; this command can be
included in the protocol description.

Table1. Summary of the results
Tools

Protocols FDR AVISPA Theoretical
Result

Protocol I Off-line Secure Off-line
Protocol II No check Secure Off-line
Protocol

III No check Secure Off-line

Protocol
IV No check Secure Secure

Protocol V No check Secure Off-line
Protocol

VI Off-line Secure Off-line

Protocol
VII Off-line Secure Off-line

Protocol
VIII Secure Secure e-residue

attack

However, AVISPA was not able to detect any of the
off-line attacks known to exist in the protocols. In
order to verify whether AVISPA really has ability to
detect off-line attacks, we change some
password-based protocols listed in the library of
protocols verified by the AVISPA project team [13] in
such a way to be vulnerable to off-line attack and
checked with the AVISPA tool. Nevertheless,
AVISPA showed that there is no attack in the modified
protocol meaning that the results we got in Section 3
are reliable. Here is the original SPEKE protocol listed
in [13].

1. A → B: exp(kab, Na)
2. B → A: exp(kab, Nb)
3. A → B: {Ca}_K
4. B → A: {Cb,Ca}_K
5. A → B: {Cb}_K

In SPEKE, K=exp(kab, Na*Nb) is the
Diffie-Hellman key, kab is the password shared
between Alice and Bob, Na and Nb are nonces, and Ca
and Cb are challenges, generated respectively by Alice
and Bob. We replaced the Diffie-Hellman key K in the
third and fourth message flows with the password kab,
resulting in insecurity again off-line attacks. However,
AVISPA was not able to detect such an attack.

5 Conclusion
In this paper, we verified typical password–based
security protocols via well-known formal verification
methods in order to investigate their real abilities, far
from what is written in papers and manuals. We think
this work can serve for people, who designs security
protocols and need to verify their proposed protocol

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp310-315)

by formal verification tools, in the sense that it shows
the weaknesses of two well-known and strong
verification tools. We also verified other
authentication protocol where algebraic attacks like
e-residue attack exist. And we are trying to propose a
model to detect such an attack.

References:
[1] J.C. Mitchell, M. Mitchell, and U. Stern, Automated

analysis of cryptographic protocols using Murphi, IEEE
Symposium on Security and Privacy, 1997

[2] W. Marrero, E. Clarke, and S. Jha. A model checker
for authentication protocols, Proceedings of the
DIMACS Workshop on Design and Formal
Verification of Security Protocols, 1997.

[3] C.A.R. Hoare, Communication sequential processes,
1985.

[4] G. Lowe, Breaking and fixing the Needham-Schroeder
public-key protocol using FDR, Proceedings of Tools
and Algorithms for the Construction and Analysis of
Systems, volume 1055 of LNCS, pages 147-166.
Springer-Verlag, 1996.

[5] Formal Systems (Europe) Ltd, FDR2 user manual, Aug.
1999.

[6] G.Lowe, Casper: A compiler for the analysis of security
protocols, 10th IEEE Computer Security Foundation
Workshop, 1997

[7] ISO (1989), ESTELLE: A formal description technique
based on an extended state transition model,
International Standard ISO 9074.

[8] C. Meadows, The NRL protocol analyzer: an overview,
Journal of Logic Programming, vol. 26, no. 2, pp.
113-131, 1996.

[9] C. Meadows, Applying formal methods to the analysis
of a key management protocol, Journal of Computer
Security, vol. 1, no. 1, 1992.

[10]S. Stubblebine and C. Meadows, Formal
characterization and automated analysis of known- pair
and chosen-text attacks, IEEE Journal on Selected
Areas in Communications, vol. 18, no. 4, pp. 571-581,
2000.

[11]G. Lowe and A.W Roscoe, Using CSP to detect errors
in the TMN protocol, IEEE transactions on Software
Engineering, 1997.

[12] A. Armando et al., The AVISPA tool for the automated
validation of Internet security protocols and
applications, 2005.

[13] AVISPA-project team, Deliverable D6.2: specification
of the problems in the high-level specification language,
2005.

[14] P. Ryan and S. Schneider, Modeling and analysis of
security protocols, 2001.

[15] Y. Chevalier, et al., High level protocol specification
language for industrial security-sensitive protocols,
Proc. SAPS04, Austrian Computer Society, 2004.

[16] IETF (Internet Engineering Task Force), Challenge
handshake authentication protocol, IETF RFC 1994.

[17] S.M. Bellovin and M. Merritt, Encrypted key
exchange: password-based protocols secure against
dictionary attacks, Proc. of IEEE Symposium on
Security and Privacy, pp. 72-84, 1992.

Proceedings of the 4th WSEAS Int. Conf. on Information Security, Communications and Computers, Tenerife, Spain, December 16-18, 2005 (pp310-315)

