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Abstract: - A Neural networks (NNs) approach is presented for evaluating the frequency dependent iron losses in 
ferromagnetic cores. The architecture of the implemented neural network is a feed-forward net, but, instead of the usual 
classical gradient descendent algorithm, the present approach is based on a genetic algorithm training. The use of  the genetic 
algorithms avoids local minima in the optimization of the synaptic weight space (NN training). The implemented NN has a 
single input (the frequency of the imposed field source), and a single output (the iron loss). Validation versus experimental 
data is presented. 
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1   Introduction 
The prediction of the frequency dependent iron losses is a 
fundamental task in magnetic machines and sensors design. 
The computation of losses is classically performed by 
approaches involving the implementation of static hysteresis 
models (i.e. Jiles or Preisach) added with eddy currents and 
anomalous losses computation methods (e.g. FEM). These  
approaches are further complicated in presence of non 
sinusoidal excitations: the determination of suitable model 
parameters and adequate meshing in FEM application is 
strongly required. The aim of the present paper is to 
describe an alternative approach for the prediction of 
dynamic hysteresis losses under pure sinusoidal excitations 
by using Neural Networks (NNs). In many cases the data 
sheets of a particular material furnishes the hysteresis loops 
for a generic number of frequencies. Thus, it is possible to 
determine the iron losses per unit of volume at each 
experimental frequency by evaluating the loop area. By 
means of the Fourier Descriptor [1] the loop area evaluation 
can be performed in all cases in which the hysteresis loop 
shape is assigned. Several computed (or measured) losses 
for a set of frequency have been used to train Neural 
Networks. In particular a NN having a single input neuron 
(the frequency) and a single output neuron (the 
corresponding loss) has been designed. After training the 
NN is able to predict any loss referred to an out-of-training 
frequency. It is evident the utility of this tool for designers. 
The training algorithm of the implemented NN has been 
designed by exploiting Genetic Algorithms (GAs) instead of 
the usual gradient descendent algorithm used for classical 
back-propagation networks. In this way it has been possible 
to avoid to stop the training in a local minimum in the 
synaptic weight space. The present approach has been 
validated comparing results with experimental tests on a 
commercial ferromagnetic toroid. 
 

2   Problem Formulation 
Back propagation multilayer NNs have been already used 
for dynamic loop shape prediction under sinusoidal exciting 
field [1] [2]. The aim of papers [1] and [2] was to predict 
the shape of hysteresis loops by varying the frequency of 
the sinusoidal imposed magnetic field. Thus, in [1] the NNs 
are used to predict the Fourier Series (FS) coefficients of the 
flux density, B(t), in presence of a sinusoidal excitation H(t) 
at a generic frequency. In this case, two equal NNs working 
in parallel, one dedicated to the first n sinusoidal 
coefficients, and one dedicated to the first n cosinusoidal 
coefficients of the B(t) FS was implemented. Each NN had 
2 hidden layer with 15 neurons, 2 input neurons managing 
the H(t) fundamental frequency, f, and the peek amplitude, 
Hm; k (k = 1.. 50) output neurons each returns the k-th 
harmonic term of B(t) FS. On the other hand, in the present 
paper, the aim is to evaluate only the dependence of the iron 
losses from the magnetic field frequency. Thus, the NN 
approach can be now strongly simplified. In this kind of 
analysis, it is enough to use a single NN having one input 
neuron (representative of the frequency) and one output 
neuron (representative of the power loss). The pattern for 
NN training (a list of frequency and corresponding power) 
can be obtained: 1) from the knowledge of several 
hysteresis loops from data sheets; 2) from the knowledge of 
the power loss directly from a wattmeter in a experimental 
context.  
 
 
2   NN Training patterns  
For creating suitable patterns for NN training, a numerical 
evaluation of iron losses is necessary. In the present paper, 
the approach proposed in [2] has been followed. As it is 
known, the static hysteresis loop area, on the B-H plane, 
corresponds to the magnetic energy density. In dynamic 
regime, it represents the global energy density including 
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eddy currents, hysteresis and anomalous losses per unit of 
volume and frequency. In fact, the electrical power supplied 
to the exciting coil of the ferromagnetic nucleus is 
expressed by the following product: 
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is the exciting coil electromotive force measured on N 
turns;  
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is the current flowing into the coil and generating the 
magnetic field H(t); S is the nucleus cross section area; �m 
is the nucleus magnetic path. The mean value of the power 
is equal to the losses, P:  
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where f is the H(t) fundamental frequency. Equation (2) 
returns also the B-H loop area (energy density) multiplied 
by the core volume and by the fundamental frequency and 
we can write: 
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In fact, by applying the Parseval Theorem to the mean value 
of the product between B(t) FS and H(t) FS, and by  
manipulating equations (1) and (2), we have: 
 

∑
=

+−=
n

r
rrrrm BkfHSP

1
)

2
cos( παβπλ

                                 (4)                                                             
 
where βr  and αr are the phases of the r-th harmonic of flux 
density and magnetic field respectively,  as well as Br and 
Hr are the peek amplitudes;  
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is the power factor. Equation (4), also indicates that only the 
H(t) and B(t) harmonics with same r-th order give a 
contribution to power losses. All other B(t) harmonics, 

which do not appear in the H(t) FS, play a deformation role 
but do not generate losses. Moreover, it must be observed, 
that equation (6) can not be directly used to predict the loop 
area value in the present approach. In fact, as previously 
said, the loop prediction is graphic and it has been 
performed on the B-H plane where the time does not 
explicitly appear; consequently,  B(t) is not still known. For 
this task, the Fourier Descriptor approach proposed in [1] 
has been applied. 
 
3   Implemented Neural Network 
The implemented NN architecture is shown in Figure 1.  It 
consists of a three-layer perceptron made of a single input, 
single hidden and a single output layer. The NN input is the 
frequency (Hz) of the magnetic field, while the output is the 
power loss (W). The NN learning is based on the early 
stopping criterion. Moreover, the NN training is based on 
Genetic Algorithms (GAs) [3] instead of the usual gradient 
descendent algorithm used for classical back-propagation 
networks. In this way it is possible to avoid the 
inconvenient of local minimum in the synaptic weight space 
[3]. The GAs are evolutionary algorithms which find 
inspiration from natural evolution. A detailed description of 
GAs and applicative examples are available in literature [4] 
– [6]. 
The NN training uses a data pattern which is iteratively 
presented to the NN (see Table 1: Training Set). For each 
iteration (a presentation of the whole training set to the NN) 
the GAs operates an optimization of the NN synaptic 
weights. Then a new out-of-training pattern: the Test Set 
(see Table 2) is used to evaluate the error of the NN 
response. When the error on the test set becomes lower of 
an assigned value the training is over.  
 
 

 
Figure. 1: Implemented Neural Network 

Proc. of the 5th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2005 (pp458-461)



The present approach has been validated comparing results 
with experimental tests on a ferromagnetic core made of 
Alnico 2 material with  
 
nucleus resistivity ρ = 0.57⋅10-6 Ωm,  
 
height of lamination d = 30⋅10-2 mm  
 
width w = 5 mm. 
 
In Figure 2. is reproduced the frequency dependent loops 
for some used in NN training frequencies. 
 
 
2.1 NN Performance 
Figures 3 and 4, show the trend of the Mean Square Error 
performed by the Genetic Algorithm used to update the 
synaptic weights. 
 
 

Table 1: Training Set 
Frequency Hz Actual kW Estimated kW 
1515 0.4910 0.5448 
4515 1.6710 1.6100 
6015 2.3450 2.3503 
7515 3.0670 3.0700 
1.052e+004 4.6340 4.6333 
1.202e+004 5.4730 5.4607 
1.352e+004 6.3450 6.3485 
1.502e+004 7.2490 7.2479 
1.802e+004 9.1410 9.1419 
1.952e+004 10.1300 10.1390 
2.102e+004 11.1300 11.1348 
2.402e+004 13.2200 13.2271 
2.552e+004 14.2900 14.2896 
2.702e+004 15.3800 15.3721 
3.002e+004 17.6200 17.6738 
3.152e+004 18.7600 18.7369 
3.302e+004 19.9200 19.9734 
3.452e+004 21.1000 21.0704 

 
 
 
 
 

Table2: Test Set 
Frequency Hz Actual kW Estimated kW 

3015 1.0510 1.0052 
9015 3.8310 4.1173 
1.652e+004 8.1820 7.5932 
2.252e+004 12.1700 12.4446 
2.852e+004 16.4900 17.4945 
3.602e+004 22.2900 21.2819 

 

 
Figure. 2: Frequency dependent hysteresis loops under 
analysis 
 
 
 

 
Figure 3: Mean Square Error performed by the Genetic 
Algorithm for the Training Set. 
 
 

 
Figure 4: Mean Square Error performed by the Genetic 
Algorithm for the Test Set. 
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4   Conclusion 
A Neural network approach has been used for evaluating 
the frequency dependent iron losses in ferromagnetic cores. 
The neural network architecture is a multilayer feed-
forward net. Instead of the usual gradient descendent 
algorithm classically used to train back-propagation 
networks, the present approach is based on a genetic 
training. The validation demonstrates that the present 
approach shows adequate accuracy and it can be used as a 
tool for designers.  
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